
MATLAB® Application Deployment
Web Example Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Application Deployment Web Example Guide

© COPYRIGHT 2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2008 Online only New for MATLAB® Compiler™ Version 4.8 (Release

R2008a)
October 2008 Online only Revised for MATLAB® Compiler™ Version 4.9 (Release

R2008b)
March 2009 Online only Revised for MATLAB® Compiler™ Version 4.10 (Release

R2009a)
September 2009 Online only Revised for MATLAB® Compiler™ Version 4.11 (Release

R2009b)

Contents

How to Use This Guide

1
About This Guide . 1-2

Who Should Use This Guide? . 1-3

Commonly Used Software and Preliminary Setup
Information . 1-4
MATLAB Programmer . 1-4
Integration Experts (Business Service Developer and
Front-End Developer) . 1-4

Internal Analyst . 1-5

Anatomy of a MATLAB Web Application

2
MATLAB Web Application Environment 2-2

Lifecycle of a Deployed MATLAB Web Application 2-4
Introduction . 2-4
MATLAB Programmer . 2-6
Business Service Developer . 2-7
Front-End Developer . 2-7
Server Administrator . 2-7
Internal Analyst . 2-8
End-To-End Developer . 2-8

v

MATLAB Programmer Tasks

3
Programming in MATLAB . 3-2
Returning Data Types . 3-3

Deploying MATLAB Code with the Builders 3-6

Business Service Developer Tasks

4
Working with the Business Service Layer 4-2
About the Business Service Layer . 4-2
About the Examples . 4-4

Creating a DAO for Deployment . 4-6
Initializing a Component . 4-6
Interacting with a Component . 4-7

Hosting a DAO on a Web Server . 4-24
Hosting the DAO with a Servlet . 4-24
Hosting a DAO Using a Java™ Web Service 4-31
Hosting a .NET DAO with ASPX . 4-36
Hosting a DAO Using a .NET Web Service 4-40

Front-End Developer Tasks

5
Working with the Front-End Layer 5-2
About the Front-End Layer . 5-2
About the Examples . 5-4

Creating a WebFigure on a JSP Page 5-6

vi Contents

Creating a WebFigure on an ASPX Page 5-10

Working with Static Images . 5-13

Displaying Complex Data Types Including Arrays and
Matrices . 5-18

Using Web Services . 5-26

Server Administrator Tasks

6
Managing a Deployment Server Environment 6-2
The Server Administrator’s Role in Deployment 6-2
An Overview of Deployed Applications 6-2
Installing the MATLAB Compiler Runtime (MCR) 6-3
Loading the MATLAB Compiler Runtime (MCR) 6-5
Scaling Your Server Environment . 6-7
Ensuring Fault Tolerance . 6-9

Hot Deployment . 6-11
.NET . 6-11
Java . 6-11

Working with Multiple Versions of the MATLAB
Compiler Runtime (MCR) . 6-12

Unsupported Versions of the JVM 6-13

Internal Analyst Tasks

7
Working with Content . 7-2

vii

Example Tasks . 7-3

End-to-End Developer Tasks

8
Role of the End-To-End Developer 8-2

Example: The Magic Square Calculator On the Web . . 8-3

Creating an End-to-End Web Application 8-5
Creating a Java Web Application, End-to-End 8-5
Creating a .NET Web Application, End-to-End 8-13

Sources for More Information

A
Other Examples . A-2
MATLAB® Builder JA . A-2
MATLAB® Builder NE . A-2

Index

viii Contents

1

How to Use This Guide

• “About This Guide” on page 1-2

• “Who Should Use This Guide?” on page 1-3

• “Commonly Used Software and Preliminary Setup Information” on page 1-4

1 How to Use This Guide

About This Guide
MATLAB® Compiler™, MATLAB Builder NE™, MATLAB Builder JA™,
and MATLAB Builder EX™ take MATLAB functions and expose them in
a language-specific manner that can be deployed to users who do not have
MATLAB installed.

When deploying a MATLAB application in a Web-based environment, the
number of possible architectural configurations, programming languages,
operating systems, Web servers, and frameworks can be intimidating,
especially if you are new to Web deployment.

The goal of the MATLAB Application Deployment Web Example Guide is to
provide a series of templates demonstrating how to successfully implement
the possible configurations available in the Web deployment space.

Use this guide to:

• Learn about the components of a Web deployment environment.

• Review an architectural configuration of a typical Web deployment
implementation and how the components in the configuration work
together.

• Reference specific models for performing the most common to the most
complex deployment tasks, such as:

- Creating a deployable function

- Hosting the component delivered by the MATLAB Programmer using
J2EE and .NET Web technologies

- Displaying complex data types (arrays, matrices) on a Web page

- Enabling scalability through stateless services used with MATLAB®

Builder™ JA or MATLAB Builder NE

• Deploying applications through implementation of SOAP Web services

1-2

Who Should Use This Guide?

Who Should Use This Guide?
Many skill sets are involved in deploying MATLAB® applications.

These skills sets include the MATLAB Programmer (usually a scientist
or engineer), a Business Services Developer and Front-End Developer
(programmers responsible for interfacing with languages and frameworks
such as Java and .NET, as well as developing Web page content), and the end
user, who consumes the final product.

Since it is sometimes confusing to determine who should perform what task in
a large installation, this guide’s structure is role based. In other words, the
tasks that belong to each role are listed in separate sections or chapter. This
organization enables more novice users to focus only on the tasks related to
their area of expertise and enables advanced users to customize a list of tasks
pertinent to their own area of expertise.

1-3

1 How to Use This Guide

Commonly Used Software and Preliminary Setup
Information

In this section...

“MATLAB Programmer” on page 1-4

“Integration Experts (Business Service Developer and Front-End
Developer)” on page 1-4

“Internal Analyst” on page 1-5

MATLAB Programmer

• MATLAB®

• Financial Toolbox

• MATLAB® Compiler™

• MATLAB Builder JA

• MATLAB Builder NE

Note Many of the examples in this guide use the software listed here. It is
not likely you will use all of the software listed here.

Integration Experts (Business Service Developer and
Front-End Developer)

• MCR (MATLAB® Compiler™ Runtime)

• Microsoft® Visual Studio™ 2005 or other supported IDE

• Microsoft IIS 5

• Microsoft .NET Framework 2.0 or later

• Java™ SDK (Software Developer Kit) 1.5 or later

• Java JRE (Java Runtime Environment) 1.5 or later

1-4

Commonly Used Software and Preliminary Setup Information

• Apache Tomcat™ 5 Web Server

• Apache Axis2™ Web Services Engine

• PHP server-side hypertext preprocessor 5.2.3 or later

• NUSOAP PHP class add-in

Internal Analyst

• Microsoft Office™ 2003 or later

• Microsoft Office™ Web Services Toolkit

MATLAB,
Compiler

MCR,
Java web server
(e.g., Tomcat),
Soap server
(e.g., Axis)

Java web server,
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

Web browser
(Firefox, IE,
Safari)

Web browser
(Firefox, IE,
Safari)

MCR, IIS,
Soap server (IIS)

MCR, Java web server
(e.g., Tomcat),
Soap server (e.g., Axis),
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

MCR, IIS,
Soap server (IIS),
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

IIS,
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

Excel

Business

S
o

ft
w

ar
e

R
o

le
s

Integration Experts End User End-to-end User

MATLAB
Programmer

General
Developer

Business Service
Developer

External
User

Front End
Developer

Internal
Analyst

Java
Builder

.NET
Builder

1-5

1 How to Use This Guide

1-6

2

Anatomy of a MATLABWeb
Application

• “MATLAB Web Application Environment” on page 2-2

• “Lifecycle of a Deployed MATLAB Web Application” on page 2-4

2 Anatomy of a MATLAB® Web Application

MATLAB Web Application Environment
The fundamental goal of the Application Deployment products (MATLAB
Compiler and the builders) is to enable work that has been accomplished
within MATLAB® to be deployed outside the MATLAB environment. This is
accomplished with the MATLAB Compiler Runtime (MCR), which is a set of
libraries that runs encrypted MATLAB code.

In a Web application, the builder products allow integration of the MCR at
the server tier level. This enables end users to execute MATLAB applications
over the Web without installing client software.

WebFigures is a client and server technology that further extends this
capability by enabling end users to interact with a MATLAB figure in
much the same way as they use an axis within MATLAB. The WebFigures
functionality of MATLAB Builder JA and MATLAB Builder NE allows users
limited to Web access the ability to dynamically interact with MATLAB
figures.

2-2

MATLAB® Web Application Environment

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

Creates reusable service that is scalable

Creates front end applications

Customer of the company

User of the site

Employer of the company

User of tools and sites

Role ResponsibilitiesKnowledge Base

MATLAB
ProgrammerB

u
si

n
es

s

MATLAB expert

Creates services out of components
received from the MATLAB programmer

Service consumer responsible for
presentation and usability

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

Creates reusable service that is scalable

Creates front end applications

General
Developer

E
n

d
-t

o
-E

n
d

 D
ev

el
o

p
er

Business Service
Developer

No MATLAB experience

Creates services out of components
received from the MATLAB programmer

In
te

g
ra

ti
o

n
 E

xp
er

ts

External
User

External user over the internet
through firewalls

No MATLAB or IT experience

Front End
Developer

Service consumer responsible for
presentation and usability

No MATLAB experience

Internal
Analyst

Internal user over the network

Little to no MATLAB or IT experience

E
n

d
 U

se
r

2-3

2 Anatomy of a MATLAB® Web Application

Lifecycle of a Deployed MATLAB Web Application

In this section...

“Introduction” on page 2-4

“MATLAB Programmer” on page 2-6

“Business Service Developer” on page 2-7

“Front-End Developer” on page 2-7

“Server Administrator” on page 2-7

“Internal Analyst” on page 2-8

“End-To-End Developer” on page 2-8

Introduction
How does a single piece of M-code become a deployable, portable, robust,
scalable Web application? Through skillful deployment by a number of people
in an organization, each playing distinct and significant roles.

The following diagrams depict the supported implementation and
architectures available when using MATLAB application deployment
products.

2-4

Lifecycle of a Deployed MATLAB® Web Application

Deployed Application Tier Interactions

2-5

2 Anatomy of a MATLAB® Web Application

External end user
via browser

(no MCR) Firewall

Internet

Firewall

Load
balancer

Load
balancer

Internal end user
via browser

(no MCR)

Multi-tier large implementation

Single-tier small implementation

External facing web
servers (no MCR)

Internal facing
web server

(behind firewall)

Middle tier servers

Front end and
middle tier servers

Front end tier servers

Internal end user
via browser (no MCR)

Router

Internal end user
via browser (no MCR)

End-to-end
MATLAB programmer

MCR

MCR

MCR

MATLAB Programmer
The first phase in a deployed application’s life begins when code is written
in MATLAB by a MATLAB programmer, whose objective is sharing it with
other people either within or outside of the organization. To accomplish this
objective, the programmer uses MATLAB Compiler. MATLAB Compiler

2-6

Lifecycle of a Deployed MATLAB® Web Application

makes M-code usable by people in vastly different environments who may not
have knowledge of MATLAB or the M language.

When MATLAB Builder JA (for Java language) or MATLAB Builder NE
(for Microsoft .NET Framework) is installed along with MATLAB Compiler,
M-functions can be encrypted and wrapped in Java or .NET interfaces. The
MATLAB programmer takes these deployable components and gives them to
the business service developer.

Business Service Developer
At this point in the deployment lifecycle, integration is usually required in
order to make the deployed application work with the existing applications in
the organization. The Business Services Developer installs these deployable
applications along with the proper version of the MCR, and converts MATLAB
data types to native language data types so they can be used without any
coupling to MATLAB in other tiers of the installation architecture. When the
Java or .NET component is called, it will instantiate the MCR to execute the
underlying MATLAB code. Once these services are exposed (either as Web
services or through an API) Front End Developers can connect to them and
use them.

Front-End Developer
Front-end developers are typically responsible for user-visible functionality
and know little about under-the-covers implementation. Their primary
concern is the stability and security of the organization’s data within the
confines of a firewall. Once the front-end developers create some mechanism
for exposing the application functionality to the end user, it is up to the end
user to complete the lifecycle by interacting with the application to perform
some task or solve some business problem. External users typically achieve
this through a Web browser.

Server Administrator
Server administrators are responsible for keeping the servers up and running,
meeting the IT department’s commitments to the rest of the organization as
outlined in SLA agreements. They are not MATLAB experts and may or may
not know much about integrating deployed applications in various computing
environments. However, they are expert in understanding which versions of

2-7

2 Anatomy of a MATLAB® Web Application

which computing environments (JREs and .NET frameworks, for example)
can co-exist and run stably in order to achieve the end-user’s desired results.

Internal Analyst
Internal analysts may use the Web site or may interact with the business
tier directly. In this case, an example of a common activity would be when
a financial analyst accesses a business tier Web service and a complex
Microsoft® Excel® model. Or, they access an internal Web site, performing
specific tasks not available to their customers.

End-To-End Developer
The end-to-end developers are virtual “one-stop shops.” They are MATLAB
experts, but are also skilled in many of the areas of expertise as the business
service developer and front-end developer, though their level of expertise may
vary over their many areas of responsibility. To this end, this guide presents
examples of comprehensive deployment tasks scoped specifically to the time
and resource constraints typically faced by end-to-end developers.

2-8

3

MATLAB Programmer
Tasks

• “Programming in MATLAB” on page 3-2

• “Deploying MATLAB Code with the Builders” on page 3-6

3 MATLAB® Programmer Tasks

Programming in MATLAB

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

MATLAB
Programmer

MATLAB is an interpreted programming environment. You can execute
functions directly at the command prompt or through an editor in saved files.
Methods may be created, having their own unique inputs and outputs. When
deploying a MATLAB function to other programming environments, such as
.NET and Java, you must contain your M-code within functions. MATLAB
Compiler does not allow you to use inline scripts.

The following examples demonstrate how to perform basic MATLAB
programmer tasks for deployed applications; they do not attempt to represent
every way a MATLAB programmer can interface with MATLAB. Upcoming
topics demonstrate how to use various data types in deployed applications.
For more specific information about any of these data types, see the
documentation for the product you are using (MATLAB Compiler, MATLAB
Builder JA, or MATLAB Builder NE)

Creating a Deployable MATLAB Function

Virtually any calculation that you can create in MATLAB can be deployed,
providing it is contained in a function. For example:

>> 1 + 1

cannot be deployed.

However,

function result = addSomeNumbers()
result = 1+1;

end

3-2

Programming in MATLAB

can be deployed, since the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an
input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

Returning Data Types
MATLAB allows many different deployable data types. This section contains
examples of how to work with figures. For an in-depth explanation of how
to work with MATLAB primitive data types, see the MATLAB External
Interfaces documentation.

MATLAB Figures
Often, you are dealing with images displayed in a figure window, and not just
string and numerical data. Deployed Web applications can support figure
window data in a number of ways. By using the WebFigures infrastructure
(see “Deploying a Java™ Component Over the Web” in the MATLAB Builder
JA User’s Guide or “Deploying a MATLAB Figure Over the Web Using
WebFigures” in the MATLAB Builder NE User’s Guide), the respective
builder marshalls the data for you.

Alternatively, you can take a snapshot of what is in the figure window at a
given point and convert that data into the raw image data for a specific image
type. This is particularly useful for streaming the images across the web.

Returning Data from a WebFigure Window

WebFigures is a feature that enables you to embed dynamic MATLAB figures
onto a Web page through a Builder JA or Builder NE component. This concept
can be used with any data in a figure window.

3-3

3 MATLAB® Programmer Tasks

As in the following example, you close the figure before the code is exited so
that the figure does not “pop up,” or appear later, in the deployed application.
You do not need to specify any reorientation data when using WebFigures. If
the figure is attached to the rest of the infrastructure, it will automatically
pass, resize, and reorient accordingly.

%returns a WebFigure reference containing the
%data from the figure window
function resultWebFigure = getWebFigure

f = figure;
set(f,'Color',[.8,.9,1]);
set(f,'Visible','off');
surf(peaks);
resultWebFigure = webfigure(f);
close(f);

end

Returning a Figure as Data

This approach is typically used for instances where WebFigures can’t be used,
or in a stateless application.

%We set the figure not to be visible since we are
%streaming the data out
%Notice how you can specify the format of the bytes,
% .net uses unsigned bytes (uint8)
% java uses signed bytes (int 8)
%This function allows you to specify the image format
%such as png, or jpg
function imageByteData = getSurfPeaksImageData(imageFormat)

f = figure;
surf(peaks);
set(f, `Visible', `off');
imageByteData = figToImStream(f, imageFormat, `uint8');
close(f);

end

3-4

Programming in MATLAB

Reorienting a Figure and Returning It as Data

Sometimes you want the function to change the perspective on an image
before returning it. This can be accomplished like this:

%We set the figure not to be visible since we are
%streaming the data out
%Notice how you can specify the format of the bytes,
% .net uses unsigned bytes (uint8)
% java uses signed bytes (int 8)
%This function allows you to specify the image format
%such as png, or jpg
function imageData =

getImageDataOrientation(width, height, rotation,
elevation, imageFormat)

f = figure(`Position', [0, 0, width, height]);
surf(peaks);
view([rotation, elevation]);
set(f, `Visible', `off');
imageData = figToImStream (f, imageFormat, `uint8');
close(f);

end

3-5

3 MATLAB® Programmer Tasks

Deploying MATLAB Code with the Builders
Writing the M-code is only the first step when deploying an application.
You must next determine how the application is structured. Although you
might have a large amount of M-code that needs to run within a component,
typically only a small number of entry points need to be exposed to the calling
application. It is best to determine these entry points and to make sure
all inputs and outputs are necessary before deploying a Web application.
Typically the best practice is to ensure the M-files that contain a method have
the same name as the M-file for all entry point methods.

For examples using the MATLAB Deployment Tool (deploytool), see
“Getting Started” in the MATLAB Builder JA documentation and “Getting
Started” in the MATLAB Builder NE documentation.

It is also possible to use the MATLAB® Compiler™ mcc command to build
components. See the mcc command reference page in any of the builder
products for more information.

3-6

4

Business Service Developer
Tasks

• “Working with the Business Service Layer” on page 4-2

• “Creating a DAO for Deployment” on page 4-6

• “Hosting a DAO on a Web Server” on page 4-24

4 Business Service Developer Tasks

Working with the Business Service Layer

In this section...

“About the Business Service Layer” on page 4-2

“About the Examples” on page 4-4

Creates reusable service that is scalable

Business Service
Developer

No MATLAB experience

Creates services out of components
received from the MATLAB programmer

About the Business Service Layer

Note For comprehensive end-to-end implementations of the concepts in this
chapter, see Appendix A, “Sources for More Information”.

Most software contains a business service layer, which is a set of interfaces,
business objects (and logic to manipulate them), and mechanisms for data
access that run the core business.

A typical business service layer contains the following sublayers:

• Interfaces — Typically the business service layer can implement several
different interface types which all interact with common data elements and
common business objects, all using the same business logic. Software and
related services used to access business data from native or Web clients
include:

- SOAP services

- Remoting interfaces

- HTTP services

- Java servlets

- JSPs (for Java)

4-2

Working with the Business Service Layer

- ASPX (for .NET)

• Business Objects and Logic — This is business data expressed in the form
of objects along with the logic to manipulate the objects. This data is loaded
by a combination of inputs from the interfaces and data from the data
access layer.

• Data Access — This layer links to all lower-level data such as databases,
where access into a deployed application would typically take place.
Your generated component fits into this category, as it can be used as a
mechanism through which to access the MATLAB Compiler Runtime
(MCR).

4-3

4 Business Service Developer Tasks

Elements of the Business Service Layer

About the Examples
Depending on the size and complexity of an implementation some of these
elements can overlap. The examples in this documentation assume direct
communication from the interfaces into the DAO (data access object or
wrapper utility) that you create.

4-4

Working with the Business Service Layer

All examples in this document are coded as stateless (with the exception of
the MATLAB Builder JA™ WebFigures example) and are scalable. Servers
can be added or augmented by a load balancer for performance tuning.

Tip To scale MATLAB Builder NE WebFigures, use the .NET Distributed
Session setting. This enables all machines in your Web farm to use the same
session.

4-5

4 Business Service Developer Tasks

Creating a DAO for Deployment
To access business objects in .NET and Java environments, you must write a
data access class or classes.

The code in these examples represents what exists within the data access
section of an application since it bridges across MATLAB data and data types
and Java and .NET data types.

Note In these examples, a fake component generated using the MATLAB
builder products called deploymentExamples is used. Assume it has been
imported.

Initializing a Component
Use these examples as a framework for initializing a component.

Java

DeploymentExamples deployment = null;
try
{

deployment = new DeploymentExamples ();

//**************
//Use the deployment code here
// (see examples below)
//**************

}
catch(MWException mw_ex)
{

mw_ex.printStackTrace();
}
finally
{

deployment.dispose();
}

4-6

Creating a DAO for Deployment

.NET

DeploymentExamples.DeploymentExamples deployment = null;
try
{

deployment = new DeploymentExamples.DeploymentExamples();

//******************************
//**Use your deployment code here
//** (See examples below)
//******************************

}
finally
{

deployment.Dispose();
}

Interacting with a Component
You interact with a component by passing inputs to a deployed application
or producing MATLAB output from a deployed application. All of these
examples fit where the comment block resides in “Initializing a Component”
on page 4-6and the same component class is used. The Java and .NE Builder
infrastructure handles data marshalling when passing parameters to a
component. Data conversion rules can be found in the MATLAB builder
documentation. If a specific data type is required, you can use the MWArray
objects and pass in the appropriate data type.

Converting an Integer to a MATLAB Data Type
Some of the ways to pass inputs to a deployed applications are demonstrated
in these examples:

Java

int n = 3;
MWNumericArray x = new MWNumericArray(n, MWClassID.DOUBLE);

.NET

int n = 3;

4-7

4 Business Service Developer Tasks

MWNumericArray x = new MWNumericArray(n, true);

Converting Array Data to a MATLAB Data Type
Arrays can be converted to several different MATLAB data types. An example
of converting a String array into a cell array follows:

Java

//Create the array of data
String[] friendsArray1 =
{

"Jordan Robert",
"Mary Smith",
"Stacy Flora",
"Harry Alpert"

};

int numberOfArrayElements1 = friendsArray1.length;
int numberOfArrayColumns1 = 1;

//Create the MWCellArray to store the data
MWCellArray cellArray1 =

new MWCellArray(
numberOfArrayColumns1,
numberOfArrayElements1);

//Iterate through the array and add the elements to
// the cell array.

for(int i = 1; i<friendsArray1.length+1; i++)
{

cellArray1.set(i, friendsArray1[i-1]);
}

.NET

String[] array =
{

4-8

Creating a DAO for Deployment

"Jordan Robert",
"Mary Smith",
"Stacy Flora",
"Harry Alpert"

};

int numberOfArrayElements = array.Length;
int numberOfArrayColumns = 1;

MWCellArray cellArray =
new MWCellArray(

numberOfArrayColumns,
numberOfArrayElements);

for (int i = 1; i < array.Length + 1; i++)
{

cellArray[i] = array[i - 1];
}

Converting a List to a MATLAB Data Type
A list can be converted to several different MATLAB data types. An example
of converting a List of Strings into a cell array follows:

Java

//Create a list of data
List friendsList = new LinkedList();
friendsList.add("Jordan Robert");
friendsList.add("Mary Smith");
friendsList.add("Stacy Flora");
friendsList.add("Harry Alpert");

int numberOfListElements = friendsList.size();
int numberOfListColumns = 1;

//Create a MWCellArray to store the data
MWCellArray cellArray2 =

new MWCellArray(

4-9

4 Business Service Developer Tasks

numberOfListColumns,
numberOfListElements);

//Iterate through the list adding the elements
// to the cell array.

Iterator friendsListItr = friendsList.iterator();
for(int i = 1;friendsListItr.hasNext(); i++)
{

String currentFriend = (String)friendsListItr.next();
cellArray2.set(i, currentFriend);

}

.NET

List<String> list = new List<String>();
list.Add("Jordan Robert");
list.Add("Mary Smith");
list.Add("Stacy Flora");
list.Add("Harry Alpert");

int numberOfArrayElements = list.Count;
int numberOfArrayColumns = 1;

MWCellArray cellArray =
new MWCellArray(

numberOfArrayColumns,
numberOfArrayElements);

int i = 1;
foreach (String currentElement in list)
{

cellArray[i] = currentElement;
i++;

}

4-10

Creating a DAO for Deployment

Converting Name Value Pairs to a MATLAB Data Type

Java (Maps)
It is common to have maps of data (name value pairs). The corresponding
.NET data type is Dictionary. The most similar data type in MATLAB is the
structure. Here is an example where you convert a map of people’s names
into a MATLAB structure.

//First we create a Java HashMap (java.util.HashMap).
Map firendsMap = new HashMap();
friendsList.put(Jordan Robert , new Integer(3386));
friendsList.put(Mary Smith , new Integer(3912));
friendsList.put(Stacy Flora , new Integer(3238));
friendsList.put(Harry Alpert , new Integer(3077));

//Now we set up the MATLAB Structure that we will fill
// with this data.

int numberOfElements = firendsMap.size();
int numberOfColumns = 1;
String[] fieldnames = { name , phone };
MWStructArray friendsStruct =

new MWStructArray(
numberOfElements,
numberOfColumns,
fieldnames);

//Now we iterate through our map, filling in the structure

Iterator friendsMapItr = friendsMap.keySet().iterator();
for(int i = 1; friendsMapItr.hasNext(); i++)
{

String key = (String)friendsMapItr.next();
friendsStruct.set(fieldnames[0], i,

new MWCharArray(key));
friendsStruct.set(fieldnames[1], i (Integer)

friendsMap.get(key));
}

4-11

4 Business Service Developer Tasks

.NET (Dictionaries)

Dictionary<String, int> dictionary =
new Dictionary<String, int>();

dictionary.Add("Jordan Robert", 3386);
dictionary.Add("Mary Smith", 3912);
dictionary.Add("Stacy Flora", 3238);
dictionary.Add("Harry Alpert", 3077);

int numberOfElements = dictionary.Count;
int numberOfColumns = 1;
String[] fieldnames = { "name", "phone" };
MWStructArray output =

new MWStructArray(
numberOfElements,
numberOfColumns,
fieldnames);

int i = 1;
foreach (String currentKey in dictionary.Keys)
{

output[fieldnames[0], i] = currentKey;
output[fieldnames[1], i] = dictionary[currentKey];
i++;

}

Getting MATLAB Numerics from a Deployed Application
This code resides in the try block for an initialized component (see
“Initializing a Component” on page 4-6).

Java

Object[] numericOutput = null;
MWNumericArray numericArray = null;
try
{

numericOutput = deployment.getNumeric(1);
numericArray = (MWNumericArray)numericOutput[0];
int i = numericArray;

4-12

Creating a DAO for Deployment

}
finally
{

MWArray.disposeArray(numericArray);
}

.NET

MWNumericArray result = (MWNumericArray)deployment.getNumeric();
int resultInt = result.ToScalarInteger();

Getting MATLAB Strings from a Deployed Application

Java

Object[] stringOutput = null;
MWCharArray stringArray = null;
try
{

stringOutput = deployment.getString(1);
stringArray = (MWCharArray) stringOutput [0];
String s = stringArray;

}
finally
{

MWArray.disposeArray(stringArray);
}

.NET

MWCharArray result = (MWCharArray)deployment.getString();
String resultString = result.ToString();

Getting MATLAB Numeric Arrays from a Component

Java

Object[] numericArrayOutput = null;

4-13

4 Business Service Developer Tasks

MWNumericArray numericArray1 = null;
try
{

numericArrayOutput = deployment.getNumericArray(1);
numericArray1 = (MWNumericArray)numericArrayOutput[0];
int[] array = numericArray1.getIntData();

}
finally
{

MWArray.disposeArray(numericArray1);
}

.NET

MWNumericArray result =
(MWNumericArray)deployment.getNumericArray();

Double[] doubleArray =
(Double[])result.ToVector(MWArrayComponent.Real);

Getting Character Arrays from a Component

Java

Object[] stringArrayOutput = null
MWCharArray mwCharArray = null;
try
{

stringArrayOutput = deployment.getStringArray(1);
mwCharArray = ((MWCharArray)stringArrayOutput[0];
char[] charArray = new char[mwCharArray.numberOfElements()];
for(int i = 0; i < charArray.length; i++)
{

char currentChar =
((Character)mwCharArray.get(i+1)).charValue();

charArray[i] = currentChar;
}

}
finally
{

4-14

Creating a DAO for Deployment

MWArray.disposeArray(mwCharArray);
}

.NET

// Note that since MWCharArray doesn't have a
// ToVector method, it is necessary
// to iterate through and get a single
// dimension for the output.
// MWCharArray result =
// (MWCharArray)deployment.getStringArray();
char[,] resultArray = (char[,])result.ToArray();
char[] outputArray = new char[resultArray.GetLength(1)];
for (int i = 0; i < resultArray.GetLength(1); i++)
{

outputArray[i] = resultArray[0, i];
}

Getting Byte Arrays from a Component

Java

Object[] byteOutput = null;
MWNumericArray numericByteArray = null;

try
{

byteOutput = deployment.getByteArray(1);
numericByteArray = (MWNumericArray)byteOutput[0];
byte[] byteArray = numericByteArray.getByteData();

}
finally
{

MWArray.disposeArray(numericByteArray);
}

.NET

MWNumericArray result =

4-15

4 Business Service Developer Tasks

(MWNumericArray)deployment.getByteArray();
byte[] outputByteArray =

(byte[])result.ToVector(MWArrayComponent.Real);

Getting Cell Arrays from a Component

Java
This example shows how to iterate through a cell array and put the elements
into a list or an array:

Object[] cellArrayOutput = null;
MWCellArray cellArray = null;
try
{

cellArrayOutput = deployment.getCellArray();
cellArray = (MWCellArray)cellArrayOutput[0];

List listOfCells = new LinkedList();
Object[] arrayOfCells =

new Object[cellArray.numberOfElements()];

for(int i = 0; i < cellArray.numberOfElements(); i++)
{

Object currentCell = cellArray.getCell(i + 1);

listOfCells.add(currentCell);
arrayOfCells[i] currentCell;

}
}
finally
{

MWArray.disposeArray(cellArray);
}

.NET

MWCellArray result = (MWCellArray)deployment.getCellArray();

List<Object> outputList = new List<Object>();

4-16

Creating a DAO for Deployment

Object[] outputArray = new Object[result.NumberOfElements];
for (int i = 0; i < result.NumberOfElements; i++)
{

outputArray[i] = result[i + 1];
outputList.Add(result[i + 1]);

}

Getting Structures from a Component

Java

Object[] structureOutput = deployment.getStruct(1);
MWStructArray structureArray =

(MWStructArray)structureOutput[0];

try
{

Object[] structureOutput = deployment.getStruct(1);
structureArray = (MWStructArray)structureOutput[0];

Map mapOfStruct = new HashMap();

for(int i = 0; i < structureArray.fieldName().length(); i++)
{

String keyName = structureArray.fieldNames()[i];
Object value = structureArray.getField(i + 1);

mapOfStruct.put(keyName, value);
}

}
finally
{

MWArray.disposeArray(structureArray);
}

.NET

MWStructArray result = (MWStructArray)deployment.getStruct();

4-17

4 Business Service Developer Tasks

Dictionary<Object, Object> output =
new Dictionary<Object, Object>();

for (int i = 0; i < result.FieldNames.Length; i++)
{

output.Add(result.FieldNames[i],
result.GetField(result.FieldNames[i]));

}

Getting a WebFigure from a Component and Attaching It to
a Page

Java
For more information about WebFigures, see “Deploying a Java Component
Over the Web” in the MATLAB Builder JA User’s Guide.

Object[] webFigureOutput = null;
MWJavaObjectRef webFigureReference = null;

try
{

webFigureOutput = deployment.getWebFigure(1);
webFigureReference = (MWJavaObjectRef)webFigureOutput[0];
WebFigure f = (WebFigure)webFigureReference.get();

}
finally
{

MWArray.disposeArray(webFigureOutput);
MWArray.disposeArray(webFigureReference);

}

//forward the request to the View layer (response.jsp)
RequestDispatcher dispatcher =

request.getRequestDispatcher(/response.jsp);
dispatcher.forward(request, response);

4-18

Creating a DAO for Deployment

Note This code will not do anything if executed directly. It needs a
response.jsp to produce output.

.NET

For more information about WebFigures, see “Deploying a MATLAB Figure
Over the Web Using WebFigures” in the MATLAB Builder NE User’s Guide.
The first two lines of code will not do anything if executed directly. It needs a
WebFigureControl on a front end page that is called WebFigureControl1. If
you are not using a local WebFigureControl and want to simply return the
WebFigure in the current response object, use this code, for example:

WebFigure webFigure = new WebFigure(deployment.getWebFigure());
WebFigureControl1.WebFigure = webFigure;

//First, attach the webfigure to one of ASP.NET's caches,
// in this case the session cache
Session["SessionStateWebFigure"] = webFigure;
//Now, use a WebFigure Utility to get an HTML String that
// will display this figure, Notice
// how we reference the name we used when attaching it
// to the cache and we indicate
// that the Attach type is session.

String localEmbedString =
WebFigureServiceUtility.GetHTMLEmbedString(

"SessionStateWebFigure",
WebFigureAttachType.session,
300,
300);

Response.Write(localEmbedString);

Getting Encoded Image Bytes from an Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()

4-19

4 Business Service Developer Tasks

{
Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray = (MWNumericArray)byteImageOutput[0];
return numericImageByteArray.getByteData();

}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

.NET

public byte[] getByteArrayFromDeployedComponent()
{

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

height,
width,
elevation,
rotation,

4-20

Creating a DAO for Deployment

imageFormat);
return (byte[])result.ToVector(MWArrayComponent.Real);

}

Getting a Buffered Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()
{

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray = (MWNumericArray)byteImageOutput[0];
return numericImageByteArray.getByteData();

}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

public BufferedImage getBufferedImageFromDeployedComponent()
{

try
{

byte[] imageByteArray = getByteArrayFromDeployedComponent()
return ImageIO.read(new ByteArrayInputStream(imageByteArray));

4-21

4 Business Service Developer Tasks

}
catch(IOException io_ex)
{

io_ex.printStackTrace();
}

}

.NET

public byte[] getByteArrayFromDeployedComponent()
{

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

height,
width,
elevation,
rotation,
imageFormat);

return (byte[])result.ToVector(MWArrayComponent.Real);
}

public Image getImageFromDeployedComponent()
{

byte[] byteArray = getByteArrayFromDeployedComponent();
MemoryStream ms = new MemoryStream(myByteArray, 0,
myByteArray.Length);
ms.Write(myByteArray, 0, myByteArray.Length);
return Image.FromStream(ms, true);

}

4-22

Creating a DAO for Deployment

Getting Image Data from a WebFigure
The following example shows how to get image data from a WebFigure object.
It also shows how to specify the image type and the orientation of the image.

.NET

WebFigure figure =
new WebFigure(deployment.getWebFigure());

WebFigureRenderer renderer =
new WebFigureRenderer();

//Creates a parameter object that can be changed
// to represent a specific WebFigure and its orientation.
//If you dont set any values it uses the defaults for that
// figure (what they were when the figure was created in M).
WebFigureRenderParameters param =

new WebFigureRenderParameters(figure);

param.Rotation = 30;
param.Elevation = 30;
param.Width = 500;
param.Height = 500;

//If you need a byte array that can be streamed out
// of a web page you can use this:
byte[] outputImageAsBytes =

renderer.RenderToEncodedBytes(param);

//If you need a .NET Image (can't be used on the web)
// you can use this code:
Image outputImageAsImage =

renderer.RenderToImage(param);

4-23

4 Business Service Developer Tasks

Hosting a DAO on a Web Server
After you construct your DAO, you need to expose the wrapped service(s)
via the Web.

There are many things to consider with regards to exposing the service.
For example, a JSP is not suited for binary streaming since the J2EE
infrastructure already wraps the output stream. In each of the following
sections, some basic concepts that can be used in a realistic system are
demonstrated. Typically, the response is not simply dumped to the output
stream, but instead wrapped in a more complex XML document or Web
service. Using these templates as a guide, you can extend these examples
using similar patterns. For each of these examples, refer to the DAO class
defined in “Creating a DAO for Deployment” on page 4-6. This DAO takes
care of MATLAB specific data conversion and data clean-up tasks.

Hosting the DAO with a Servlet
Note that the DAO is initialized in the init method of the servlet. When you
create and access a component created with the builders, an instance of the
MCR is created that the component communicates with in order to handle
MATLAB tasks. This can incur much overhead if performed every time a user
accesses the servlet. Alternately, by performing initialization in the init
method, it is performed once for all sessions using the servlet. If you want to
rebuild each time, place the call within a doget method.

It is also possible that neither of the above approaches will meet your needs
since they initialize once per servlet, rather then once per server. If this is
an issue, use a singleton object that is instantiated in a Context Listener
class (a class that extends ServletContextListener). This class has a
contextInitialized method and a contextDestroyed method which get
called automatically when the server starts or is stopped. This allows all of
your applications to access the singleton and access component objects as
needed.

1 Create a staging folder, if one does not exist, under the folder where your
component resides on your Web server. The DAO must reside in this folder,
in a Java archive file (JAR), on the class path so it can be imported.

2 Initialize the DAO using the following examples as templates:

4-24

Hosting a DAO on a Web Server

Initializing the DAO for a Servlet

package examples;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.servlet.ServletConfig;
import java.util.*;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;

public class ExamplesServlet extends HttpServlet
{

Examples examples = null;

public void init(ServletConfig config) throws
ServletException

{
super.init(config);

try
{

examples = new Examples();
}
catch(Exception e)
{

e.printStackTrace();
}

}

public void destroy()
{

super.destroy();
examples.dispose();

}

protected void doGet(final HttpServletRequest request,
HttpServletResponse response)

4-25

4 Business Service Developer Tasks

throws ServletException, IOException
{

try
{

//***********************************
//**All code using the DAO would go here
//**Any of the below examples can be pasted here
//***********************************
int integer = examples.getIntFromMWNumericArray();
response.getOutputStream().println("int: " + integer);

}
catch(Exception e)
{

e.printStackTrace();
response.getOutputStream().println("ERROR "+

e.getMessage());
}

}
}

Numeric

int integer = examples.getIntFromMWNumericArray();
response.getOutputStream().println("int: " + integer);

String

String string = examples.getStringFromMWCharArray();
response.getOutputStream().println("String: " + string);

Numeric Array

int[] intArray = examples.getIntArrayFromMWNumericArray();
response.getOutputStream().println("Numeric Array: ");
for(int i = 0; i<intArray.length;i++)
{

response.getOutputStream().println("Array index("+ i+"): " +
intArray[i]);

}

4-26

Hosting a DAO on a Web Server

Character Array

char[] charArray = examples.getCharArrayFromMWCharArray();
response.getOutputStream().println("Char Array: ");
for(int i = 0; i<charArray.length;i++)
{

response.getOutputStream().println
("Array index("+ i +"): " +

charArray[i]);
}

Cell Array To Array

Object[] array = examples.getArrayFromCellArray();
for(int i = 0; i < array.length; i++)
{

response.getOutputStream().println("Array index("+ i+"): " +
array[i]);

}

Cell Array To List

List list = examples.getListFromCellArray();
Iterator listItr = list.iterator();
while(listItr.hasNext())
{

response.getOutputStream().println("List Item: " +
listItr.next());

}

Structure To Map

Map map = examples.getMapFromStruct();
response.getOutputStream().println("Structure Array: ");
Iterator mapKeyItr = map.keySet().iterator();
while(mapKeyItr.hasNext())
{
String mapKey = (String)mapKeyItr.next();
Object mapValue = map.get(mapKey);
response.getOutputStream().println("KEY: " + mapKey + " " +

"VALUE: " + mapValue);

4-27

4 Business Service Developer Tasks

}

Byte Array

byte[] byteArray = examples.getByteArrayFromMWNumeric();
response.getOutputStream().println("Byte Array: ");
for(int i = 0; i<byteArray.length;i++)
{

response.getOutputStream().print(byteArray[i]);
}
response.getOutputStream().write(byteArray);

Images (WebFigures)

This example is very similar to “Deploying a Java Component Over the
Web”, but this example also uses our DAO.

HttpSession session = request.getSession();

WebFigure userPlot =
(WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called
// for this session,
// create the plot and WebFigure object
if (userPlot== null)
{

userPlot = examples.getWebFigureFromMWJavaObjectRef();
// store the figure in the session context
session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session
session.setAttribute(

"UserPlotBinder",
new MWHttpSessionBinder(userPlot));

}

WebFigureHtmlGenerator webFigureHtmlGen =
new WebFigureHtmlGenerator(WebFigures ,getServletContext());

4-28

Hosting a DAO on a Web Server

String outputString =
webFigureHtmlGen.getFigureEmbedString(

userPlot,
"UserPlot",
"session",
"700",
"700",
null);

response.getOutputStream().print(outputString);

WebFigure to Bytes

byte[] byteArrayFromWebFigure =
examples.getByteArrayFromWebFigure();

response.getOutputStream().write(byteArrayFromWebFigure);

Raw Image Bytes

byte[] rawImageBytes =
examples.getImageByteArrayFromMWNumericArray();

response.getOutputStream().write(rawImageBytes);

Raw Image Bytes with Reorientation

Note This example allows you to perform similar functionality to
what WebFigures (see “Deploying a Java Component Over the Web”
in the MATLAB Builder JAdocumentation) performs, but in a manual
implementation. It is one of many ways you can implement this
functionality in a stateless manner.

int height = Integer.parseInt(request.getParameter("height"));
int width = Integer.parseInt(request.getParameter("width"));
int elevation =

Integer.parseInt(request.getParameter("elevation"));
int rotation =

Integer.parseInt(request.getParameter("rotation"));
String imageFormat = request.getParameter("imageFormat");

4-29

4 Business Service Developer Tasks

byte[] rawImageBytes =
examples.getImageByteArrayFromMWNumericArrayWithOrientation(

height,
width,
elevation,
rotation,
imageFormat);

response.getOutputStream().write(rawImageBytes);

3 Inside the staging folder you created at the start of this procedure, create a
WEB-INF folder.

4 Inside the WEB-INF folder, create two additional folders:

• classes

• lib

5 Place all of the class files (including the DAO created in “Creating a DAO
for Deployment” on page 4-6) into the class folder within the appropriate
package folders that exist.

6 Copy the component JAR file into the lib folder.

7 Create a web.xml file in the WEB-INF folder.

This file provides the Web server with a valid path into your code and
defines the entry point into that code. Use this template as an example:

Example of a web.xml File Used in a Java™ Servlet Component

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<servlet>
<servlet-name>ExamplesServlet

</servlet-name>
<servlet-class>examples.ExamplesServlet

</servlet-class>

4-30

Hosting a DAO on a Web Server

</servlet>
<servlet-mapping>

<servlet-name>ExamplesServlet</servlet-name>
<url-pattern>/ExamplesServlet</url-pattern>

</servlet-mapping>
</web-app>

The following URL accesses this servlet with the configuration described
above:

http://localhost:8080/Examples/ExamplesServlet

Note the Examples string in the URL, since the JAR is named
Examples.jar. Using this string sets up the correct server context and is a
customizable attribute within the console of many Web servers.

8 Using the java -jar command, bundle the folders you created into a WAR
(Web archive) and place it in your Web server’s component folder.

Note Some Web servers require you to register the application before it is
accessible, usually by referencing the WAR from within the administrator’s
console.

Hosting a DAO Using a Java™ Web Service
More and more companies are hosting services on the Web, often times with
SOAP (Simple Object Access Protocol). This exposes business functions
through simple services. Each of these services performs a specific task.
Since SOAP is an established standard that is supported by many different
languages and third-party applications, it is extremely versatile. You can
use a SOAP Web service directly in Microsoft Excel with no prior knowledge
of the service’s implementation. Multiple language support makes SOAP
suitable for use with primitive data types.

Although these primitives can be wrapped in a number of complex object
structures, the examples in this section will cover fundamental use cases that
should be the same, regardless of data structure and business objects.

4-31

4 Business Service Developer Tasks

In this section, you will learn how to create basic Java objects that handle
business logic, while Apache Axis2 performs the mechanics involved with
turning the logic a Web service and exposing it. Alternatively, you can start
by using WSDL (Web Service Definition Language — the definition of your
service) and generate Java from that. Afterward you can customize the Java
with your business logic, or change the WSDL manually in a number of other
ways to meet your needs.

Setting Up the Root Web Service Class
Since Axis2 supports POJOs (Plain Old Java Objects) you will create a shell
class to contain all the service methods:

package examples;

public class ExamplesWebService
{

//***************************
//**Place service methods here
//**For our examples we will only
//**be taking in and returning
//**primitive values
//***************************

}

Interacting with the DAO
Some examples of how to use the DAO with various data types follow:

Numeric

public int getInt()
{

Examples examples = new Examples();
int integer = examples.getIntFromMWNumericArray();
examples.dispose();
return integer;

}

4-32

Hosting a DAO on a Web Server

String

public String getString()
{

Examples examples = new Examples();
String string = examples.getStringFromMWCharArray();
examples.dispose();
return string;

}

Numeric Array

public int[] getIntArray()
{

Examples examples = new Examples();
int[] intArray = examples.getIntArrayFromMWNumericArray();
examples.dispose();
return intArray;

}

Character Array

public char[] getCharArray()
{

Examples examples = new Examples();
char[] charArray = examples.getCharArrayFromMWCharArray();
examples.dispose();
return charArray;

}

Byte Array

public byte[] getByteArray()
{

Examples examples = new Examples();
byte[] byteArray = examples.getByteArrayFromMWNumeric();
examples.dispose();
return byteArray;

}

4-33

4 Business Service Developer Tasks

Raw Image Bytes

Raw Image Bytes
public byte[] getImageByteArray()
{

Examples examples = new Examples();
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArray();
examples.dispose();
return rawImageBytes;

}

Raw Image Bytes with Reorientation

public byte[] reorientAndGetImageByteArray(
int height,
int width,
int elevation,
int rotation,
String imageFormat)

{
Examples examples = new Examples();
byte[] rawImageBytes =
examples.getImageByteArrayFromMWNumericArrayWithOrientation(

height,
width,
elevation,
rotation,
imageFormat);

examples.dispose();
return rawImageBytes;

}

Deploying the Web Service
1 Create a staging folder, if one does not exist, and copy the Examples DAO
class created in “Creating a DAO for Deployment” on page 4-6 and the
Web service class created in “Setting Up the Root Web Service Class” on
page 4-32into it.

4-34

Hosting a DAO on a Web Server

2 Create a lib folder and copy your deployed component into it.

3 Create a meta-inf folder and, inside it, create a services.xml file with
these contents:

<service>
<parameter name="ServiceClass"
locked="false">examples.ExamplesWebService</parameter>
<operation name="getInt">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getString">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getIntArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getCharArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getByteArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getImageByteArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
</service>

The services.xml file tells Axis2 which methods to expose, and what
mechanism to use to expose them.

4 Copy all of the files into a WAR (Web archive) file and place them in the
axis2 component folder (axis2/WEB-INF/services). Use the java -jar

4-35

4 Business Service Developer Tasks

command but give the output file an .aar extension rather than a .jar
extension.

5 You should now see your service running in the Axis console. From the
console, note the URL for the WSDL file. You will use this URL in other
applications to communicate with your Web service.

Hosting a .NET DAO with ASPX

Initializing the DAO
Before a DAO can be used, it must be initialized. The basic template to
initialize a .NET DAO looks like this:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Examples.Examples examples = new Examples.Examples();

//***************************************
//**This is where the examples would be pasted in
//***************************************
//for Examples:
int integer = examples.getIntFromMWNumericArray();
Response.Write("int: " + integer);

examples.dispose();
}

}

4-36

Hosting a DAO on a Web Server

Interacting with the DAO
Some examples of how to use the DAO with various data types follow:

Numeric

int integer = examples.getIntFromMWNumericArray();
Response.Write("int: " + integer);

String

String stringResult = examples.getStringFromMWCharArray();
Response.Write("String: " + stringResult);

Double Array

double[] doubleArray =
examples.getDoubleArrayFromMWNumericArray();

Response.Write("Double Array: ");
for (int i = 0; i < doubleArray.Length; i++)
{

Response.Write("Array index(" + i + "): " + doubleArray[i]);
}

Character Array

char[] charArray = examples.getCharArrayFromMWCharArray();
Response.Write("Char Array: ");
for (int i = 0; i < charArray.Length; i++)
{

Response.Write("Array index("+ i +"): " + charArray[i]);
}

Cell Array to Array

Object[] array = examples.getArrayFromCellArray();
for (int i = 0; i < array.Length; i++)
{

Response.Write("Array index("+ i+"): " + array[i]);

4-37

4 Business Service Developer Tasks

}

Cell Array to List

List<Object> list = examples.getListFromCellArray();
foreach (Object currentObj in list)
{

Response.Write("List Item: " + currentObj);
}

Structure

Dictionary<Object, Object> dictionary =
examples.getDictionaryFromStruct();

Response.Write("Structure Array: ");
foreach (Object currentKey in dictionary.Keys)
{

Response.Write("Key: " + currentKey + " Value: " +
dictionary[currentKey]);

}

Byte Array

byte[] byteArray = examples.getByteArrayFromMWNumericArray();
Response.Write("Byte Array: ");
for (int i = 0; i < byteArray.Length; i++)
{

Response.Write(byteArray[i]);
}
Response.BinaryWrite(byteArray);

Raw Image Bytes

byte[] rawImageBytes =
examples.getImageByteArrayFromMWNumericArray();

Response.BinaryWrite(rawImageBytes);

4-38

Hosting a DAO on a Web Server

Raw Image Bytes with Reorientation

Note This example allows you to perform similar functionality to what
WebFigures performs, but in a manual implementation. It is one of many
ways you can implement this functionality in a stateless manner.

int height = Convert.ToInt32(Request.Params.Get("height"));
int width = Convert.ToInt32(Request.Params.Get("width"));
int elevation =

Convert.ToInt32(Request.Params.Get("elevation"));
int rotation = Convert.ToInt32(Request.Params.Get("rotation"));
String imageFormat = Request.Params.Get("imageFormat");
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArrayWithOrientation(
height,
width,
elevation,
rotation,
imageFormat);

Response.BinaryWrite(rawImageBytes);

WebFigure

// In this example, we use a WebFigure Utility to get an HTML
// String that
// will display this figure, Notice
// how we reference the name we used when attaching it to the
// cache and we indicate
// that the Attach type is session.
String localEmbedString =

WebFigureServiceUtility.GetHTMLEmbedString(
"SessionStateWebFigure",
WebFigureAttachType.session,
300,
300);

Response.Write(localEmbedString);

4-39

4 Business Service Developer Tasks

Deploying the ASPX
You deploy an ASPX using the Publish functionality in Microsoft® Visual
Studio. Visual Studio puts all of your code, along with any code your project
depends upon, in a folder.

Hosting a DAO Using a .NET Web Service

Setting Up the Root Web Service Class
When creating Web services within .NET, simply create a new Web site (or
use an existing site), and add an item of type Web Service to it. This will
generate the root class in which you place your methods.

Interacting with the DAO
Each of these methods would be placed in the Web service class as methods.

Numeric

[WebMethod]
public int getInt()
{

Examples.Examples examples = new Examples.Examples();
int integer = examples.getIntFromMWNumericArray();
examples.dispose();
return integer;

}

String

[WebMethod]
public String getString()
{

Examples.Examples examples = new Examples.Examples();
String stringResult = examples.getStringFromMWCharArray();
examples.dispose();
return stringResult;

}

4-40

Hosting a DAO on a Web Server

Double Array

[WebMethod]
public double[] getDoubleArray()
{

Examples.Examples examples = new Examples.Examples();
double[] doubleArray =

examples.getDoubleArrayFromMWNumericArray();
examples.dispose();
return doubleArray;

}

Double Matrix

Since .NET Web services can’t support multidimensional arrays, convert what
is returned from MATLAB Builder NE into a jagged array, as follows:

[WebMethod]
public double[][] getDoubleMatrix(int argMagic)
{

Examples.ExamplesImpl examples =
new Examples.ExamplesImpl();

double[,] doubleMatrix =
examples.getDoubleMatrixFromMWNumericArray(argMagic);

int arraySize = (int)doubleMatrix.GetUpperBound(0) + 1;
double[][] outputMatrix = new double[arraySize][];

int upperOuter = i < (int)doubleMatrix.GetUpperBound(0) + 1;
for (int i = 0; upperOuter ; i++)
{

double[] subArray = new double[arraySize];

int upperInner = (int)doubleMatrix.GetUpperBound(1) + 1;
for(int j = 0; j < upperInner; j++)
{

subArray[j] = doubleMatrix[i, j];
}
outputMatrix[i] = subArray;

4-41

4 Business Service Developer Tasks

}

examples.dispose();
return outputMatrix;

}

Character Array

[WebMethod]
public char[] getCharArray()
{

Examples.Examples examples = new Examples.Examples();
char[] charArray = examples.getCharArrayFromMWCharArray();
examples.dispose();
return charArray;

}

Byte Array

[WebMethod]
public byte[] getByteArray()
{

Examples.Examples examples = new Examples.Examples();
byte[] byteArray = examples.getByteArrayFromMWNumericArray();
examples.dispose();
return byteArray;

}

Raw Image Bytes

[WebMethod]
public byte[] getImageByteArray()
{

Examples.Examples examples = new Examples.Examples();
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArray();
examples.dispose();
return rawImageBytes;

}

4-42

Hosting a DAO on a Web Server

Raw Image Bytes with Reorientation

[WebMethod]
public byte[] getImageByteArrayWithOrientation(

int height,
int width,
int elevation,
int rotation,
String imageFormat)

{
Examples.Examples examples = new Examples.Examples();
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArrayWithOrientation(
height,
width,
elevation,
rotation,
imageFormat);

examples.dispose();
return rawImageBytes;

}

Deploying the Web Service
Visual Studio 2005 does all of the work involved with generating Web service
artifacts. Once you’ve created the above methods, just run the service and
you’ll see a tester page that shows you the location of the WSDL, and then
allows you to test each method.

4-43

4 Business Service Developer Tasks

4-44

5

Front-End Developer Tasks

• “Working with the Front-End Layer” on page 5-2

• “Creating a WebFigure on a JSP Page” on page 5-6

• “Creating a WebFigure on an ASPX Page” on page 5-10

• “Working with Static Images” on page 5-13

• “Displaying Complex Data Types Including Arrays and Matrices” on page
5-18

• “Using Web Services” on page 5-26

5 Front-End Developer Tasks

Working with the Front-End Layer

In this section...

“About the Front-End Layer” on page 5-2

“About the Examples” on page 5-4

Creates front end applications

Front-End
Developer

Service consumer responsible for
presentation and usability

No MATLAB experience

About the Front-End Layer

Note For comprehensive end-to-end implementations of the concepts in this
chapter, see Appendix A, “Sources for More Information”.

In well-designed multi-tier application architectures, the front-end layer
presents data to the end user and validates the user’s input. This is
accomplished by accessing data acquired at lower-level architectural tiers to
the user and taking in user inputs, validating them, and then sending them to
the lower-level tiers for processing.

The data within this layer reside on servers that are almost always outside of
the corporate firewall and therefore, accessible by everyone. Consequently,
security and stability are integral to the front-end layer, and it is important
to isolate implementation details outside of this layer so people cannot
determine how your site is architected.

A well-designed front-end layer has data access, translation and validation,
and presentation functions separated into individual logical code sections.
This increases an application or Web site’s maintainability since you can
change where the data originates or the format that it arrives in without
changing user-visible code.

A typical front-end layer contains the following sublayers.

5-2

Working with the Front-End Layer

Elements of the Front End Layer

• Data Access — This sublayer pulls data in from middle-tier services like
databases, where access into a deployed application would typically take
place. Among the technologies used to transmit data at this sublayer are:

- Remoting interfaces

- SOAP services

5-3

5 Front-End Developer Tasks

- XML over HTTP protocol

• Translation/Validation — Data is passed from the data access sublayer
to the translation sublayer and translated into objects used for data
presentation. Since these objects represent what the user sees (rather
than the underlying business logic) they are very lightweight and easy to
maintain. This is also where any validation would occur to ensure that
values are in a proper state for processing.

• Presentation — This layer uses the data in the business objects to display
information on a Web site. Any user input actions are validated in the
objects and, if needed, callbacks to the middle layer occur to retrieve
updates based on the user input.

About the Examples
Dealing with MATLAB data is, for the most part, no different then dealing
with other Web data except for the fact that dynamically generated images
may be involved. The examples in this document are not meant to show how
to build a Web site, but rather to demonstrate what types of building blocks
are needed to work with MATLAB data in an existing Web site. Most of these
examples can be integrated directly into larger applications containing JSP,
HTML, or ASPX code.

Surf Peaks and Magic Square Application Integration

5-4

Working with the Front-End Layer

The following two templates show how you can integrate applications built
with MATLAB products into a larger application. In each case, there is a
small area in the interface where your applications exist after the user enters
input (if only a mouse click).

In the left template, it is possible to have a simple IMG tag, where the src=
is a servlet from the middle tier that dumps out the image data. It is also
possible to use an interactive AJAX component embedded in a subframe, or to
use embedded WebFigures.

In the right template, clicking the Go button triggers the page to validate that
the value in the input box is valid, and then sends that data to the middle tier
service which returns a two-dimensional array. It is the front-end layer’s job
to format this data and present it properly.

In the examples that follow, these concepts are simplified and focus on how
the communication occurs within the middle layer, and how some typical data
translations are performed.

5-5

5 Front-End Developer Tasks

Creating a WebFigure on a JSP Page
There are several ways to use WebFigures on a Web page with Java:

• Return a special HTML string from the servlet which embeds the
WebFigure into a page.

• Using the custom WebFigure tag library directly from the JSP, have the
servlet bind the WebFigure and redirect it to the JSP.

• Generate a string from the middle tier that can be dumped directly onto a
Web page at the front end, embedding all of the WebFigure functionality
and the correct callbacks directly into the front-end page.

In each case, the WebFigure object is stored in the Web server’s session. The
Java script that executes the client calls back to the server for updates and,
using the cached WebFigure, new updates are sent back to the client.

Using an HTML String

This example is very similar to what you can find in “Deploying a Java
Component Over the Web”, but this example also uses the DAO. The middle
tier code in “Hosting the DAO with a Servlet” on page 4-24 is repeated here:

HttpSession session = request.getSession();

WebFigure userPlot =
(WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called for
// this session,
// create the plot and WebFigure object
if (userPlot== null)
{

userPlot = examples.getWebFigureFromMWJavaObjectRef();
// store the figure in the session context
session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session
session.setAttribute(

"UserPlotBinder",

5-6

Creating a WebFigure on a JSP Page

new MWHttpSessionBinder(userPlot));
}

Using the WebFigure Tag Library

To use the WebFigure object directly from a JSP page, reference the
webfigures tag library. This creates a WebFigure object with your object’s
parameters. The UserPlot is the name of the Web object that you placed in
the cache by the middle tier.

Note Host the middle tier and the JSP on the same server.

<%@ taglib prefix="wf" uri="/WEB-INF/webfigures.tld" %>

< wf:web-figure
name="UserPlot"
scope="session"
root="WebFigures"
width="100%"
height="100%"/>

When using this approach, the only other code needed on the servlet is a
redirect back to the JSP that the above code resides on. In this example, this
code is contained in response.jsp. The servlet code would look like this:

RequestDispatcher dispatcher =
request.getRequestDispatcher("/response.jsp");
dispatcher.forward(request, response);

Using Embedded HTML

This option is convenient since all of the “heavy lifting” is done on the server
and only a string is sent to the front end. In this example, notice how the
servlet is merely referenced and dumps the contents into a Web page frame.

5-7

5 Front-End Developer Tasks

Tip This technique can be used regardless of the transfer protocol or location
of the front end or back end. Since a simple string is being sent, you can
code the front-end in a number of ways, adapting nicely to a SOAP transfer,
for example.

<iframe
src ="http://localhost:8080/Examples/ExamplesServlet?

function=webFigureEmbedded"
width="590"
height="480">

</iframe>

To generate this string, run code similar to this on the servlet:

// The argument to the WebFigureHtmlGenerator
// constructor is the URL where the
// WebFigures servlet is mapped (relative to the Web a
// pplication and Servlet context)
WebFigureHtmlGenerator wfHtmlGenerator =

new WebFigureHtmlGenerator("WebFigures",
getServletContext());

String embeddedString;

try
{
//This generates a string that can be sent to the
// response that represents the WebFigure.
embeddedString =
wfHtmlGenerator.getFigureEmbedString(

userPlot,
"UserPlot",
"session",
null,
null,
null));

}
catch(MWException mwe)
{

5-8

Creating a WebFigure on a JSP Page

throw new Exception();
}

response.getOutputStream().println(embeddedString);

5-9

5 Front-End Developer Tasks

Creating a WebFigure on an ASPX Page
There are several ways to use WebFigures on a Web page with .NET:

• Using the WebFigureControl locally in design mode (the easiest approach)

• Using the WebFigureControl remotely in design mode

• Returning an HTML string from the ASPX code behind which embeds
the WebFigure into a page.

• Using a WebFigureControl directly from the ASPX code without utilizing
the designer.

In each case, the WebFigure object is stored in the Web server’s cache. The
JavaScript that executes the client calls back to the server for updates and,
using the cached WebFigure, new updates are sent back to the client. For
more information on these examples, see the MATLAB Builder NE User’s
Guide.

Using the WebFigureControl Locally in Design Mode

1 Drag a WebFigureControl from the Microsoft® Visual Studio® Toolbox to
an ASPX page in design mode. This automatically adds a reference to
WebFigureService to your Web site.

2 Edit the code behind the site to attach the figure to the control, as follows:

WebFigure webFigure =
new WebFigure(deployment.getWebFigure());

WebFigureControl1.WebFigure = webFigure;

Using the WebFigureControl Remotely in Design Mode

1 Drag a WebFigureControl from the Microsoft Visual Studio Toolbox onto
an ASPX page in design mode.

2 Edit the Properties for this figure to point it to a Web site that has
webfigureservice installed and that has attached a WebFigure to the
cache. This can either be done using code as shown below or by using the
Properties window in the designer.

5-10

Creating a WebFigure on an ASPX Page

//This is the name that was used on the server
// when attaching the WebFigure
WebFigureControl1.Name = "UserPlot";

//By not setting this value it will try and use
// the current web site for all redirection calls
WebFigureControl1.Root = "";

//If you didn't set this or if it was set to unknown
// this would instruct the WebFigureService to look
// through the diferent caches for a WebFigure with
// this specific name.
WebFigureControl1.Scope = WebFigureAttachType.session;

Returning an HTML String from ASPX Code to Embed the WebFigure
into a Page.

This example is very similar to what you can find in “Deploying a MATLAB
Figure Over the Web Using WebFigures”, but this example also uses the
DAO. The middle tier code in “Hosting a .NET DAO with ASPX” on page
4-36 is repeated here:

WebFigure webFigure = new WebFigure(deployment.getWebFigure());

//First we attach the webfigure to one of ASP.NET's caches,
// in this case, the session cache
Session["SessionStateWebFigure"] = webFigure;

//Now we use a WebFigure Utility to get an HTML
// String that will display this figure, Notice
// how we reference the name we used when attaching
// it to the cache and we indicate
// that the Attach type is session.
String localEmbedString =

WebFigureServiceUtility.GetHTMLEmbedString(
"SessionStateWebFigure",
WebFigureAttachType.session,
300,
300);

Response.Write(localEmbedString);

5-11

5 Front-End Developer Tasks

Using a WebFigureControl Directly from ASPX Code Without Using
the Designer.

To use the WebFigure object directly from an ASPX page, manually write the
code that would otherwise be automatically added to the ASPX page. Writing
the code creates a WebFigure object with your object’s parameters, as in the
following example. UserPlot is the name of the Web object that was placed in
the cache by the middle tier.

<%@ Register Assembly="WebFiguresService, Version=2.8.1.0,
Culture=neutral, PublicKeyToken=e1d84a0da19db86f"

Namespace="MathWorks.MATLAB.NET.WebFigures.Service"
TagPrefix="cc1" %>

<cc1:WebFigureControl
ID="WebFigureControl1"
runat="server"
Height="328px"
Width="399px"
Root=""
Scope="session"
Name="UserPlot"
/>

5-12

Working with Static Images

Working with Static Images
There are several options when dealing with images through a component.

You can simply save the image from the M-code to a drive somewhere using
print functionality (the front end references the physical file directly). This is
not ideal since the middle tier is behind the firewall (and the front end is in
front of it), incurring possible security concerns with where the files reside.

Using Java, you can return a Java image object from M and use it directly
from the JSP or servlet by saving it to disk or converting it to a byte stream.

Using a Static Image In a JSP Page

The simplest option is to return a data stream from your M-function as a byte
array — an encoded representation of your image, a common paradigm used
when storing and retrieving images from a database. However, it is important
to consider that only an IMG tag’s source can be set, not it’s data. The most
common solution to this issue is to have the IMG tag’s source reference a
servlet that streams the bytes out through the output stream. Although direct
communication between a presentation object and the middle tier usually isn’t
recommended, in this case it is a good solution. A common implementation is
to designate a server that only serves up images, keeping data services and
image services separate, as shown here:

<img src="http://localhost:
8080/Examples/ExamplesServlet?function=
imageBytesFromMWNumeric" alt="MATLAB IMAGE" />

Using a Static Image in a ASPX Page

Using ASPX Image objects is almost identical to using HTML IMG tags. In
this case, simply set the ImageUrl (the source of image) to be the ASPX page
created in “Deploying the ASPX” on page 4-40. You can also point to a Java
middle-tier servlet that hosts the image.

<asp:Image
ID="Image1"
runat="server"
ImageUrl=

5-13

5 Front-End Developer Tasks

"http://localhost/Examples/Tester.aspx?function=
imageBytesFromMWNumeric" />

Interacting with Images Using JavaScript (for .NET or Java)

Although “Creating a WebFigure on a JSP Page” on page 5-6 is a good solution
for most component models, sometimes a lightweight solution is needed that
you can customize for specific tasks.

JavaScript can be employed to dynamically request new images depending
on user input. Since JavaScript is not Java, it does not require that Java
Runtime be installed. JavaScript runs in a client’s browser and does not
require a Java Web server. You can use this lightweight implementation
with any of the builders. This example uses the Raw Image Bytes with
Reorientation example in “Hosting a DAO Using a Java™ Web Service” on
page 4-31 and “Hosting the DAO with a Servlet” on page 4-24. It waits for
the user to instigate a movement with the mouse (a mouse-drag “event”)
and, when the events occur, calls the server to get a new image of the new
orientation. This example, while simple, can be extended to do many other
types of image interactions.

<iframe
src ="DynamicFigure.html?url=

http://localhost:8080/Examples/ExamplesServlet?function=
imageBytesFromMWNumericWithOrientation"

width="700"
height="700">

</iframe>

DynamicFigure.html is an AJAX application that takes in a parameter (the
base function that returns an image) and accepts different orientation values:

<%@ page contentType=
"text/html;charset=UTF-8" language="java" %>

<%@ page isELIgnored ="false"%>
<html>

<head>
<title>AJAX Figure Manipulation</title>
<script type="text/javascript">

var rotationDegree = 0;

5-14

Working with Static Images

var elevationDegree = 0;
var startDragX = 0;
var startDragY = 0;
var mouseisdown = false;

function getParam(name)
{
var start=location.search.indexOf("?"+name+"=");
if (start<0) start=location.search.indexOf("&"+name+"=");
if (start<0) return '';
start += name.length+2;
var end=location.search.indexOf("&",start)-1;
if (end<0) end=location.search.length;
var result='';
for(var i=start;i<=end;i++) {

var c=location.search.charAt(i);
result=result+(c=='+'?' ':c);

}
return unescape(result);

}

function updateView()
{

var urlStr = getParam("url") +"&" +
"imageFormat=png" + "&" +
"rotation=" + rotationDegree + "&" +
"elevation=" + elevationDegree + "&" +
"width=" + contentBox.clientWidth + "&" +
"height=" + contentBox.clientHeight;

var requestedImage = document.getElementById('currentImage');
requestedImage.src = urlStr;
requestedImage.style.visibility = 'visible';

}

function stopDragging(updateX,updateY)
{
rotationDegree +=

5-15

5 Front-End Developer Tasks

Math.round(((startDragX -
updateX)/2)%360);

elevationDegree +=
Math.round(-(startDragY -

updateY)/2);
updateView();

}
</script>

</head>

<body onresize='updateView();'>
<form name=exf1>
X Drag <input type=text name=x value="0">
Y Drag <input type=text name=y value="0">

</form>

<div style='position:absolute; background:
url("matlab.gif"); left:0; right:0;

width:100%; height:100%;'>
<img style="visibility: hidden; position:absolute;

width:100%; height:100%; left:0;
top:0" src="matlab.gif"

id="currentImage">
</div>

<div id='contentBox'
style='position:absolute; background:

url("transparent_pixel.gif");
left:0; top:0; background-color:

<%= request.getParameter("color") %>;
width:100%; height:100%; overflow:hidden;'

onmousedown="mouseisdown = true; startDragX=event.clientX;
startDragY=event.clientY;"

onmouseup="mouseisdown =
false;stopDragging(event.clientX, event.clientY);
document.exf1.x.value=0; document.exf1.y.value=0;"

onmousemove="if(mouseisdown)
{document.exf1.x.value=event.clientX-startDragX;
document.exf1.y.value=event.clientY-startDragY;}">

</div>

5-16

Working with Static Images

<script type="text/javascript">
updateView();

</script>
</body>

</html>

5-17

5 Front-End Developer Tasks

Displaying Complex Data Types Including Arrays and
Matrices

You typically translate raw matrix array data to a form of displayable output.
This section provides examples using Java and .NET.

Working with JSP Page Data

In this example, a two-dimensional array (the output of a magic square, for
example) is converted to an HTML table from a JSP page. This example
assumes you have gotten the data from the middle tier and have converted it
back to an array.

<table border=0 cellpadding=4 cellspacing=4 style='margin: 16px;'>
<%
double[][] square = getMatrix();
for (double[] row : square)
{

pageContext.getOut().print("<tr>");

for(double value : row)
{

pageContext.getOut().print("<td>" + (int)value + "</td>");
}
pageContext.getOut().print("</tr>");

}
%>

Working with ASPX Page Data

The following examples use basic ASPX pages and can be incorporated into a
large enterprise site.

The easiest way to output a matrix is to iterate the array and then convert it
into an HTML table. Unfortunately, this approach is not maintainable for
large volumes of data, but is worth exploring in this example, assuming you
have communicated with the middle tier and received a two-dimensional
array of data. Assuming you have a label on the ASPX page called MatrixLbl,
here is the code to output the matrix:

5-18

Displaying Complex Data Types Including Arrays and Matrices

int size = 5;
double[][] magicSquare = getMagicSquare(size);

String temp = "";
temp +="<table border=0 cellpadding=4

cellspacing=4 style='margin: 16px;'>";

for (int i = 0; i < size; i++)
{

temp += "<tr>";
for (int j = 0; j < size; j++)
{

temp += "<td>" + magicSquare[i][j] + "</td>";
}
temp += "</tr>";

}
MatrixLbl.Text = temp;

Using ASP.NET to Integrate with WYSIWYG Controls

ASP.NET provides a number of streamlined methods to place a grid of data
on a Web page, such as mapping the data into a DataTable and referencing
the DataTable from an ObjectDataSource’s Select method. By choosing
this option, you promote reuse and also maintain separation between the
application’s visualization and logic.

You must first place a GridView onto a page, and then “bind” it to a data
source. By using an Object data source, you allow an object to dynamically get
the data from some location (like a middle tier), and put it into a DataTable.
Once this is done, the GridView will automatically display it.

Here is an example of using the Select method in your business object:

public DataTable getMagicSquare(int size)
{

//Gets the matrix from the web service.
double[][] magicSquare = getMatrix(size);

//Create an empty data table to put the matrix data in.
DataTable table = new DataTable();

5-19

5 Front-End Developer Tasks

//Since we know its a square add as many
// columns as there will be rows.
for(int i = 0; i<size; i++)
{

table.Columns.Add();
}

DataRow row;
//Iterate each element in the array creating a row out of each
for(int i = 0; i < size;i++)
{

//create a row from the table to put the data in
row = table.NewRow();
//Iterate each element in the inner array and put
// them into the row
for (int j = 0; j < size; j++)
{

row[j] = magicSquare[i][j];
}

//Add the row to the table
table.Rows.Add(row);

}
return table;

}

Working with ASP.NET Using the Visual Studio Wizard

This section demonstrates how to perform the implementation described
in “Working With ASP.NET” when using the Visual Studio wizards and a
typical Web page application. Perform the following steps to set up the data
source, bind it to a load method, and bind the method’s input parameter to
the text box.

Below is an input text box and a generic grid component from a Web page.
The grid component is connected to the ObjectDataSource.

5-20

Displaying Complex Data Types Including Arrays and Matrices

1 Start Visual Studio and configure the data source with the wizard.

2 Choose the business class that contains your methods for the object.

5-21

5 Front-End Developer Tasks

5-22

Displaying Complex Data Types Including Arrays and Matrices

3 Select the method that returns a data table containing the data to display.

5-23

5 Front-End Developer Tasks

4 Since the method requires an input, bind it to the control that contains the
value and set the default.

The finished application looks like this.

5-24

Displaying Complex Data Types Including Arrays and Matrices

5 Click the Build Square button to reselect the grid data.

5-25

5 Front-End Developer Tasks

Using Web Services
Displaying Web Services Images and Data in PHP

If your installation has a strong investment in PHP front ends, consider using
them to display Web Services running MATLAB applications.

As long as your business tier services output data in a generic
nonlanguage-specific manner (as most of the examples in this document
support), you can embed that output within any Web front end. This example
demonstrates how to use SOAP Web services to embed an image onto a PHP
page:

//References a soap library and loads the WSDL.
include("lib/nusoap.php");
$soapclient = new soapclient
('http://localhost:3465/SurfPeaksWebServiceServer/Service.asmx?WSDL',

true);

//If we had any parameters to pass
// we would add them to this array.
$params = array();

//Calls the service with the parameters.
$result = $soapclient -> call("SurfPeaksWebService", $params);

//Gets the encoded responce out of the result object.
$base64EncodedResult = $result["SurfPeaksWebServiceResult"];
//Decodes and displays the result.
echo base64_decode($base64EncodedResult);

//Unloads the soap client.
unset($soapclient);

You can use this technique to access data services, as well:

1 Install PHP 5.2.3 into IIS 5, if needed (the installer lets you specify the
server type).

2 Download NUSOAP and place it on the instance path.

5-26

http://sourceforge.net/projects/nusoap/

Using Web Services

You should be able to use any SOAP add-in. However, note that the call
syntax may change slightly. Consult the add-in documentation for further
information.

Displaying Web Services Images and Data in .NET

In Chapter 4, “Business Service Developer Tasks”, you exposed several
methods as SOAP Web services. To use these methods from the front end, add
a reference to them in your Visual Studio project by adding aWeb Reference:

1 In Visual Studio, right-click the project name and select Add Web
Reference.

2 In the URL field, enter the path to your WSDL.

3 Click Go. The resulting dialog resembles this.

Notice how all of the methods exposed earlier are displayed.

4 To add these methods to your project, click Add Reference.

5 To use any of the methods, instantiate the Web service by executing code
similar to:

5-27

5 Front-End Developer Tasks

localhost.ExamplesWebService webService =
new localhost.ExamplesWebService();

6 Access any of the methods on the Web service as you would any other .NET
object. Here are some examples:

int intValue = webService.getInt();
string stringValue = webService.getString();
double[] doubleArray = webService.getDoubleArray();
double[][] magicSquare = webService.getDoubleMatrix(size);
char[] charArray = webService.getCharArray();
byte[] bytesArray = webService.getByteArray();
byte[] imageByteArray = webService.getImageBytesArray();
byte[] imageByteArrayWithOrientation =
webService.getImageByteArrayWithOrientation(500,

500, 20, 30, "png");

5-28

6

Server Administrator Tasks

• “Managing a Deployment Server Environment” on page 6-2

• “Hot Deployment” on page 6-11

• “Working with Multiple Versions of the MATLAB Compiler Runtime
(MCR)” on page 6-12

• “Unsupported Versions of the JVM” on page 6-13

6 Server Administrator Tasks

Managing a Deployment Server Environment

In this section...

“The Server Administrator’s Role in Deployment” on page 6-2

“An Overview of Deployed Applications” on page 6-2

“Installing the MATLAB Compiler Runtime (MCR)” on page 6-3

“Loading the MATLAB Compiler Runtime (MCR)” on page 6-5

“Scaling Your Server Environment” on page 6-7

“Ensuring Fault Tolerance” on page 6-9

The Server Administrator’s Role in Deployment
In many organizations, integration developers do not handle actual production
systems. Instead, a group of people that have access to these systems and
manage various applications running on shared hardware take responsibility
for this task.

System management requires ensuring that one set of applications does
not affect another and also managing version conflicts that arise. Another
concern of the server administrator is monitoring system up-time. The
following sections discuss the nuances of the deployment products and what
the server administrator role needs to do to ensure a successful deployment.
It provides different methods of dealing with common issues that can affect
stability and performance.

An Overview of Deployed Applications
You can compare the relationship between compiled Java code and the JRE
to the relationship between a compiled M-code program and the MCR. To
execute Java code, you need a compatible version of the JRE on the system
to execute it.

6-2

Managing a Deployment Server Environment

The deployment products, similarly, provide the compiled MATLAB
application with a language-specific wrapper. The MCR provides the run-time
infrastructure that runs deployed applications. It is made up of mostly native
code.

When a deployed application integrates with a .NET or Java application, it
resembles the figure “An Integrated Deployed Application.”

An Integrated Deployed Application

In this figure, you can see how the MCR (a large native code base) exists
within the outer process of the frameworks. This coexistence can cause issues,
as illustrated later in this chapter.

Installing the MATLAB Compiler Runtime (MCR)
Because the MCR provides the run-time infrastructure that runs deployed
applications, it is a large application made up mostly of unmanaged code.
It comprises an almost full copy of MATLAB, only distributable. It has
no desktop and only executes encrypted code generated by the MATLAB
Compiler and builders. For a deployed application to function against the
MCR, you include references to specific directories on your Windows®, Linux®,
or Mac OS® X path. For more information, see “Install the MCR on Target
Computers Without MATLAB and Update System Paths”.

6-3

6 Server Administrator Tasks

The MATLAB Compiler Runtime (MCR) Installer
The MCR installer ships with MATLAB. You obtain it from the MATLAB
programmer who originally compiled the application. The version number
of the MCR Installer is the same as the version number of MATLAB. The
platform you install it on is the same as the platform on which MATLAB runs.
The installer places the MATLAB libraries in a configurable location and, on
Windows, automatically updates the system path.

You sometimes run a deployed component on a different platform than where
it originated (especially for the Java target). To port across platforms, you
need a version of the MATLAB installer for your target platform.

Helper Library Locations
For both MATLAB Builder NE, and MATLAB Builder JA, a Helper Library
ships with the MCR. This library contains information for communicating
with the MCR. It also communicates with helper utilities and data types
implemented by the wrapper code. Using these wrappers, you can convert
your data to and from MATLAB data types.

.NET

For .NET, the Helper Library resides at the following location:

• mcrroot\toolbox\dotnetbuilder\bin\win32|win64\vmajor.minor\MWArray.dll
— Contains MATLAB data type wrappers, utilities, and MCR
communication utilities

• mcrroot\toolbox\dotnetbuilder\bin\win32|win64\
vmajor.minor\WebFiguresService.dll— Contains WebFiguresService,
WebFigureControl, , and WebFigure rendering utilities)

Note vmajor.minor denotes the version of the .NET framework. Currently,
the MCR supports only version v2.0.

Note mcrroot is the MCR’s installation directory.

6-4

Managing a Deployment Server Environment

Both of these libraries install into the Global Assembly Class (GAC)
automatically when you install the MCR. Although they reside in the GAC,
you reference them from Microsoft Visual Studio during development. If
you are using the WebFigureControl from within Visual Studio, drag the
WebFiguresService.dll into the toolbox.

You can have multiple versions of this library in the GAC.

Java

For Java, the Helper Library resides at the following location:

• mcrroot\toolbox\javabuilder\jar\javabuilder.jar

Place this JAR-file on the classpath exactly one time for any Java application
that uses a deployed application.

For a Web server, place this component in the shared library location for
your server to allow all Web applications to inherit these libraries. In older
versions of Tomcat, this directory is tomcatroot/common/lib/.

Caution Placing javabuilder.jar in the WEB-INF/Lib folder for a single
Web application generally works. However, if another application also places
javabuilder.jar in its WEB-INF/Lib locations, problems may occur. The
native resources associated with javabuilder.jar can be loaded only once in
an application. Therefore, javabuilder.jar must only be visible to a single
class loader.

Note mcrroot is the MCR’s installation directory.

Loading the MATLAB Compiler Runtime (MCR)
Because deployed applications use the MCR at run-time, the MCR must be
loaded and running. The MCR loads when a class in a deployed component is
instantiated for the first time.

6-5

6 Server Administrator Tasks

MCR loading can take anywhere from 10 seconds to over a minute (if the
MCR resides on a network). To ensure a consistent user experience for Web
applications, load the MCR at server start-up time, rather than upon first use,
by instantiating a class as part of the server initialization.

.NET
In ASP.NET Web applications, create a Global Application Class
(Global.asax) using this code:

<%@ Application Language="C#" %>
<script runat="server">

void Application_Start(object sender, EventArgs e)
{

// Code that runs on application startup

myComponent.MyComponent comp = new myComponent.MyComponent();
}

</script>

For more information about the Global.asax file, see “Using Global
Application Class (Global.asax) to Create WebFigures at Server Start-Up”.

Note You do not need to dispose of the component. With MATLAB Builder
NE, you utilize the garbage collector to clean up these objects, even though
they reference native components.

Java
In a J2EE server, you write a ContextListener class that contains code the
server automatically runs when you install or remove the application.

1 Utilize the class by placing the following code in your web.xml file:

<listener>
<listener-class>myContextListenerClass</listener-class>

</listener>

2 Place this code in your class:

6-6

Managing a Deployment Server Environment

import javax.servlet.*;

public final class myContextListener implements ServletContextListener
{

public void contextInitialized(ServletContextEvent event)
{

// This method is called when the application
// is first deployed in the server

//Instantiate the deployed component,
// this will trigger the MCR to be started
event.getServletContext().setAttribute("myComponent",

new myComponent.MyComponent());
}

public void contextDestroyed(ServletContextEvent event)
{

// This method is called when the application
// is shut down on the server

myComponent.MyComponent myComp =
event.getServletContext().getAttribute("myComponent");

if(myComp != null)
{

// Dispose of the object when the server is shut down
// since it utilizes native resources that the garbage
// collector won't clean up.
myComp.dispose();

}
}

}

Scaling Your Server Environment
There are two methods to achieving scalability:

• “Calculation Scaling” on page 6-8

• “Session Scaling” on page 6-8

6-7

6 Server Administrator Tasks

Calculation Scaling
Calculation scaling involves increasing computer resources to scale and
improve performance for a specific calculation. In MATLAB, the Parallel
Computing Toolbox enables your M-code to use features built into the M
Language. These features tie into a cluster and enable your functions to
run in parallel. Parallel processing can drastically speed up the execution
of a function.

There are multiple strategies towards make your applications scalable—one
is done by writing your M-code to scale to a parallel computing algorithm.
You may ultimately have calculation scaling as well as “Session Scaling”
on page 6-8 to optimize performance.

Session Scaling
Session scaling involves enabling the maximum number of users while
minimizing performance degradation.

Many session scaling issues arise because the MCR is single threaded. A
single-threaded application prevents two users from doing work that involves
the MCR at the same time. One user must wait for the other to finish before
continuing. This wait can prove to be substantial if one user is performing a
resource-intensive task while the other is attempting a quick calculation.

To workaround the situation, enable multiple MCRs to service requests as
they arrive. Run several MCRs in separate processes; one process per MCR.
Using this technique, you can create a separate server process that receives
requests, runs the requests against one of the processes, and returns the
result.

In one solution, servers reside in a third-party grid managed by a tool that
spawns processes for each instance. Alternatively, you create your own
pooling solution and manage these processes manually. For either approach,
you accomplish the communication using either Java RMI or .NET Remoting
because deployed components and data types can be serialized.

In most cases, M-code executes quickly, and you do not need to do anything to
get your desired level of performance. As a best practice, start with a single
MCR. As your usage grows, add in a scaling layer as needed. Adding another
layer involves minimal client changes.

6-8

Managing a Deployment Server Environment

Remote Scaling

Ensuring Fault Tolerance
In your default scenario, avoid using the MCR in the same process as the rest
of your application. The MCR is a large complex native application running
inside your applications process. If the MCR runs in the same process, you
cannot ensure fault tolerance in the compiled application. To ensure that it
does not affect the outer process, move it to its own process and pass the
data back and forth.

Remoting provides the ideal solution, as discussed in “Scaling Your Server
Environment” on page 6-7. Remoting allows you to start up a process whose
only job is to start the MCR and run requests against it. Starting this process
enables lightweight access from the client.

Both MATLAB Builder NE and MATLAB Builder JA have features that allow
you to auto-convert MATLAB data types into Java or .NET data types. This

6-9

6 Server Administrator Tasks

auto-conversion frees you from running an MCR where the client process
executes, yielding a robust more application.

Using Remoting to Achieve Fault Tolerance

6-10

Hot Deployment

Hot Deployment
Hot Deployment entails replacing running application source code “on-the-fly.”
The server automatically migrates end users to this new code without the
user experiencing an outage.

.NET
MATLAB Builder NE supports Hot Deployment of deployed components in
either:

• The WebDev server (the version of IIS built into Microsoft Visual Studio)

• IIS itself

Java
Support for Hot Deployment in MATLAB Builder JA is not available at this
time.

6-11

6 Server Administrator Tasks

Working with Multiple Versions of the MATLAB Compiler
Runtime (MCR)

You can run two applications from the same Web server that link against
Deployed components built in different versions of MATLAB. To do so, create
server processes for each application. You reference the applications, using
remoting, back to the server. By using remoting, you ensure that one version
of the MCR Libraries loads into any given process.

Using Remoting to Workaround Multiple Versions of the MCR

6-12

Unsupported Versions of the JVM

Unsupported Versions of the JVM
The MCR internally utilizes a JVM unless you disable it manually. If you are
using a deployed application from within a Java application (with its own
JVM), the MCR will attach to and use that application’s JVM.

To do this successfully, you must ensure a supported MATLAB JVM version
is available to your application. For example, servers such as IBM®
WebSphere™ are incompatible for compiled applications because they use
an IBM JVM, rather than a Sun™ JVM, for example. You can workaround
this issue by using remoting to pull the MCR into its own process, where it
uses the proper JVM.

Using Remoting to Workaround an Unsupported JVM

6-13

http://www.mathworks.com/support/compilers/current_release/

6 Server Administrator Tasks

6-14

7

Internal Analyst Tasks

• “Working with Content” on page 7-2

• “Example Tasks” on page 7-3

7 Internal Analyst Tasks

Working with Content

Employer of the company

User of tools and sites

Internal
Analyst

Internal user over the network

Little to no MATLAB or IT experience

Internal analysts access the business logic through tools such as Microsoft
Excel or a Web page on the front-end tier. The end user sees only the resulting
data and has no need (or need to know) the implementation used to create it.

7-2

Example Tasks

Example Tasks
The example in this section consumes the Web service created in “Deploying
the Web Service” on page 4-34. With this type of application, you can use the
same Web service to display many different front ends. You can use data
stored in Microsoft Excel and pass it to a Web service to generate dynamic
data–riven images.

Microsoft Excel Web Service Client Standalone Application

To construct a Microsoft Excel interface to the Web service:

1 Download and install the Microsoft Office Web Service Toolkit from
Microsoft, if you haven’t already.

2 Start Microsoft Excel.

3 Open a new worksheet.

4 Using the Control Toolbox, create an Excel graphics window by dropping
and dragging an Image.

5 Drag a Command Button into the window. You use this button to trigger
the Web service call and load the graphic. At this stage, the window looks
like this.

7-3

http://www.microsoft.com/Downloads/Search.aspx?displaylang=en

7 Internal Analyst Tasks

6 Double-click the Command Button button and the VBA editor starts.

7 Select Tools > Web Service References.

Note TheWeb Service References option is available only if you install
the Microsoft Office Web Service Toolkit.

8 In Web Service URL, type the WSDL that was referenced in “Using Web
Services” on page 5-26:

http://localhost:3465/SurfPeaksWebServiceServer/Service.asmx?WSDL

7-4

Example Tasks

9 Click Search to query the Web service. The result resembles this.

10 Select the appropriate service in the Search Results pane and click Add
to bind it to your project. Notice that a Class Module is created called
clsws_Service. This module will be used by the button action to retrieve
the data.

11 In the worksheet, for the method CommandButton1_Click(), add and save
the following code:

Sheet1.Image1.Picture = Nothing

Dim value() As Byte
Set module = New clsws_Service
value = module.wsm_SurfPeaksWebService

'Saves byte() data from web service to a file
Dim intFileNumber As Integer
intFileNumber = FreeFile
Open "c:\temp1.png" For Binary As #intFileNumber
Put intFileNumber, , value
Close #intFileNumber

7-5

7 Internal Analyst Tasks

'Loads the saved picture into the image
Sheet1.Image1.Picture = LoadPicture("c:\temp1.png")

12 Click the command to display the following in the graphics pane of your
worksheet.

Tip You may need to close Microsoft Excel and reopen it to see the graphic.

7-6

8

End-to-End Developer
Tasks

• “Role of the End-To-End Developer” on page 8-2

• “Example: The Magic Square Calculator On the Web” on page 8-3

• “Creating an End-to-End Web Application” on page 8-5

8 End-to-End Developer Tasks

Role of the End-To-End Developer

Each chapter in this guide is focused on tasks that are performed in order to
deploy applications from the perspectives of various types of users. This is
done by providing snippets of code that a person in a particular role can use
to solve a particular problem within the context of some larger application.
While this approach makes sense for most users, sometimes a single user is
fulfilling all roles, and often this person is relatively new to some of the roles.
For example, sometimes an expert MATLAB programmer is asked to put
something they’ve worked on up to the Web for others to consume. They may
never have used Java or .NET before.

This chapter is aimed specifically at users playing the role of the “one-stop
shop” and will go through in relative detail all of the steps needed to build an
application from the ground up and get it running successfully.

8-2

Example: The Magic Square Calculator On the Web

Example: The Magic Square Calculator On the Web
The examples in this chapter demonstrate a Magic Square Calculator
application that allows users to input a size for a magic square. It shows
the matrix, as well as a surface plot of the matrix. This surface plot doesn’t
represent anything, but it demonstrates how to handle numerical data as well
as visualization data.

The applications built in this chapter are not complex multi-tiered
applications. Rather, these applications represent the product of the least
number of steps required to build a working Web application quickly. The
concepts demonstrated in this chapter can be extended into a robust, scalable
Web application using techniques from other chapters in this guide.

The getMagicWebFigure.m M-function, which runs the Magic Square
calculator, is as follows. It is based on the popular Magic Square getMagic
function:

getmagic.m:

function magicOutput = getMagic(x)
magicOutput = magic(x);

end

getMagicWebFigure.m:

function figureOutput = getMagicWebFigure(x)
f = figure;
magicOutput = magic(x);
surf(magicOutput);
set(gcf,'Color',[1,1,1])
figureOutput = webfigure(f);
close(f);

end

The Magic Square Calculator application, when built, looks like this.

8-3

8 End-to-End Developer Tasks

Magic Square Calculator Application Presented on the Web

8-4

Creating an End-to-End Web Application

Creating an End-to-End Web Application

In this section...

“Creating a Java Web Application, End-to-End” on page 8-5

“Creating a .NET Web Application, End-to-End” on page 8-13

Creating a Java Web Application, End-to-End
In order to deploy the Magic Square Calculator application described in
“Example: The Magic Square Calculator On the Web” on page 8-3 to the Web,
you must build and run your application using Java or .NET.

To create the Magic Square Calculator in Java, you must create:

1 The MATLAB Builder JA JAR file that is generated by compiling M-code
using MATLAB, MATLAB Compiler, and MATLAB Builder JA.

2 The JSP entry page, responsible for taking in user input, passing it on to
the servlet, and displaying the servlet’s result on the page.

3 The servlet, responsible for instantiating the deployed component. When
a request comes in, calling the M-function that returns the matrix, the
M-function returns the WebFigure. The servlet then binds the WebFigure
to the application cache of the server and produces HTML that displays the
WebFigure and finally, the matrix.

The following procedure gives you an option to build your example Web
component or download it from MATLAB Central. To download the example,
go to “Quick Start: Building Your Example Component” on page 8-5.

Quick Start: Building Your Example Component

1 Download the application code for this example fromMATLAB Centrals File
Exchange at http://www.mathworks.com/matlabcentral/fileexchange.
Once you open the file exchange, search for “Java Web Example Guide
End To End Chapter.”

8-5

http://www.mathworks.com/matlabcentral/fileexchange

8 End-to-End Developer Tasks

2 Extract the JavaEndToEnd.zip file into a working folder where you can
build the application.

3 Start Tomcat by changing your folder to tomcat\bin and executing
startup.bat.

4 Copy javabuilder.jar to the tomcat/common/libs folder.

5 Once Tomcat starts successfully, drag the JavaEndToEnd.war file into the
webapps folder under the tomcat folder.

6 Execute the application by opening a Web browser and pointing to
http://localhost:8080/JavaEndToEnd/MagicSquare/ExamplesPage.jsp.

Advanced: Building Your Example Component Manually

1 Ensure you have a version of the Java Developer’s Kit (JDK) installed that
matches the version used by the MCR. See the MATLAB Compiler User’s
Guide reference pages for details on the mcrversion command.

2 Ensure you have Tomcat 5 or later on your system (other J2EE Web
servers can work also, but the steps in this document have been tested
with Tomcat).

3 Ensure the version of the MCR you have installed is the same version
as the MCR running with MATLAB when the application was built.
If you are unsure, check with your MATLAB programmer or whoever
initially deployed the component. For more information, see “Deploying
a Component with the Magic Square Example” in the MATLAB Builder
JA User’s Guide.

4 Make note of the folder where the MCR is installed. It will be used later
when starting the applications.

5 Create the code for the JSP page:

Note This code uses an image resource and a cascading style sheet
resource that is included if you download the code from MATLAB Central
as in “Quick Start: Building Your Example Component” on page 8-5.

8-6

http://localhost:8080/JavaEndToEnd/MagicSquare/ExamplesPage.jsp

Creating an End-to-End Web Application

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

<title>Calculation Services</title>

<%

//This section of code determines if the user has entered

// a number for the square size, if they have it overlays

// the default size which is 5.

String sizeStr = request.getParameter("size");

int size = 5;

if(sizeStr!=null && sizeStr.length()>0)

{

size = Integer.parseInt(sizeStr);

}

%>

<link rel="Stylesheet" type="text/css"

media=all href="./StyleSheet.css" />

<link href="StyleSheet.css" rel="stylesheet" type="text/css" />

</head>

<body>

<form method="get">

<div style="text-align: center">

<table width="760" cellpadding="0" cellspacing="0">

<tr>

<td><img src="header_bg.jpg" alt="Header Image Not Found"

width="779" height="72" /></td>

</tr>

</table>

<h1> Calculation Services</h1>

Calculate Magic Square

Size:

<input type="text" name="size" size="8" value="<%=size%>" >

8-7

8 End-to-End Developer Tasks

<input type="submit" value="Calculate">

<script type="text/javascript">

try

{

//Sets up an HttpRequest object so we can call our

// servlet and dump the output to the screen

var objXHR = new XMLHttpRequest();

}

catch (e)

{

try

{

var objXHR = new ActiveXObject('Msxml2.XMLHTTP');

}

catch (e)

{

try

{

var objXHR = new ActiveXObject('Microsoft.XMLHTTP');

}

catch (e)

{

document.write('XMLHttpRequest not supported');

}

}

}

//Call the MagicSquare Servlet and pass it the

// size of the matrix to show

objXHR.open('GET','MagicSquare?size=<%=size%>',false);

objXHR.send(null);

//Display the result of the servlet on the page

document.writeln(objXHR.responseText);

</script>

</div>

</form>

</body>

8-8

Creating an End-to-End Web Application

</html>

6 Create the code for the servlet:

Note This code requires that the generated component created earlier and
javabuilder.jar must be on the classpath in order to compile.

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletException;

import javax.servlet.ServletConfig;

import java.io.IOException;

import examples.*;

import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;

import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;

import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;

import com.mathworks.toolbox.javabuilder.MWNumericArray;

import com.mathworks.toolbox.javabuilder.MWException;

public class MagicSquareServlet extends HttpServlet

{

private MagicCalc calc;

public void init(ServletConfig config) throws ServletException

{

super.init(config);

try

{

//We initialize the deployed component in the init

// method so it doesn't get initialized with each request

calc = new MagicCalc();

}

catch(MWException e)

{

e.printStackTrace();

}

}

8-9

8 End-to-End Developer Tasks

public void destroy()

{

super.destroy();

if(calc!=null)

{

//When the servlet gets disposed you can clean

// up the deployed component reference as well.

calc.dispose();

}

}

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

//If no size has been provided, return.

String sizeStr = request.getParameter("size");

if(sizeStr==null || sizeStr.length()==0)

return;

//Convert the input parameter size to an MWArray for use with our components

MWNumericArray size = new MWNumericArray(Integer.parseInt(sizeStr));

double[][] square = new double[0][];

WebFigure figure = null;

try

{

//Call the getMagicWebFigure method and turn

// the java object reference into a WebFigure object

Object[] results = calc.getMagicWebFigure(1, size);

MWJavaObjectRef ref = (MWJavaObjectRef)results[0];

figure = (WebFigure)ref.get();

//Attach the WebFigure to the Servlets Application cache

getServletContext().setAttribute("UserPlot",figure);

//Call the getMagic method and turn the MWArray into a array of doubles

Object[] result = calc.getMagic(1, size);

MWNumericArray array = (MWNumericArray)result[0];

8-10

Creating an End-to-End Web Application

square = (double[][])array.toArray();

}

catch(MWException e)

{

e.printStackTrace();

}

StringBuffer buffer = new StringBuffer();

//The WebFigureHtmlGenerator class creates an HTML string that

// can be embedded into a web page and will create an iFrame

// that contains the WebFigure.

WebFigureHtmlGenerator webFigureHtmlGen =

new WebFigureHtmlGenerator("WebFigures",getServletContext());

if(figure!=null)

{

try

{

String outputString =

webFigureHtmlGen.getFigureEmbedString(

figure,

"UserPlot",

"application",

"330",

"330",

null);

buffer.append(outputString);

}

catch(Exception e)

{

e.printStackTrace();

}

}

buffer.append("
");

buffer.append("
");

//Step through the matrix and output it to an HTML Table

buffer.append("<TABLE >");

8-11

8 End-to-End Developer Tasks

for (double[] row : square)

{

buffer.append("<TR>");

for (double value : row)

{

buffer.append("<TH>");

buffer.append(new Double(value).intValue());

}

}

buffer.append("</TABLE>");

buffer.append("
");

//Write the embeddable html to the response

// output stream for use on the jsp page

response.getOutputStream().print(buffer.toString());

}

}

7 Copy the javabuilder.jar file (from
MCRROOT/toolbox/javabuilder/jar/javabuilder.jar) to the
webapp/WEB-INF/lib folder.

8 Since you a compiling a servlet which has J2EE dependencies, copy
servlet-api.jar (the J2EE JAR file that comes with Tomcat) to the
current working folder. This file is usually located in the Tomcat common
lib folder (a J2EE JAR file can work as well).

9 From the root of your Projects folder we need to build the component with
MATLAB by using the following mcc command:

mcc -W "java:examples,MagicCalc" -d .\scratch -T "link:lib"
-v "class{MagicCalc:.\webapp\WEB-INF\mcode\getMagic.m,

.\webapp\WEB-INF\mcode\getMagicWebFigure.m}"

10 Copy it from your working folder to the Web applications lib folder by
typing:

xcopy /Y .\scratch\examples.jar .\webapp\WEB-INF\lib

11 Rebuild the servlet by typing the following command:

8-12

Creating an End-to-End Web Application

javac -cp servlet-api.jar;.\webapp\WEB-INF\lib\javabuilder.jar;
.\webapp\WEB-INF\lib\examples.jar;

-d .\webapp\WEB-INF\classes
.\webapp\WEB-INF\src\MagicSquareServlet.java

Note This assumes JDK 1.6 javac is on your system path:

12 To rebuild the WAR file, enter:

cd webapp
jar -cvf ..\JavaEndToEnd.war .
cd ..

Creating a .NET Web Application, End-to-End
To create the Magic Square Calculator using .NET, you must create:

1 The MATLAB Builder NE DLL file that is generated by compiling M-code
using MATLAB, MATLAB Compiler, and MATLAB Builder NE.

2 The DataTable implementation that converts the magic square output into
something that an ObjectDataSource can use in a GridView Control.

3 The ASPX page and the code behind it. This page is responsible for taking
in user input, displaying the controls, and handling page events.

Preparing Your Example Application

1 Ensure you have .NET Framework 2.0 or later installed and Visual Studio
2005 or later.

2 Ensure the version of the MCR you have installed is the same version as
the MCR running with MATLAB when the application was built. If you
are unsure, check with your MATLAB programmer or whoever initially
deployed the components. See the MATLAB Compiler User’s Guide
reference pages for details on the mcrversion command.

3 Make note of the folder where the MCR is installed. It will be used later
when starting the applications.

8-13

8 End-to-End Developer Tasks

4 Create the code for the DataTable implementation:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using Examples;

using MathWorks.MATLAB.NET.Arrays;

public class MagicSquare

{

//This class gets the data from the generated component and loads

// it into a data structure that can be automatically used by an

// ObjectDataSource in a GridView Control

public DataTable getMagicSquare(int size)

{

//Instantiate the deployed component

MagicCalc calc = new MagicCalc();

//Convert the size into an MWArray so it can be passed in

MWArray input = size;

//call the getMagic function to get the matrix

MWNumericArray output = (MWNumericArray)calc.getMagic(input);

//Convert the matrix to a .NET double array

double[,] magicSquare =

(double[,])output.ToArray(MWArrayComponent.Real);

//Create an empty data table to put the matrix data in.

DataTable table = new DataTable();

//Since we know its a square add as many

// columns as there will be rows.

for(int i = 0; i<size; i++)

8-14

Creating an End-to-End Web Application

{

table.Columns.Add();

}

DataRow row;

//Iterate each element in the array creating a row out of each

for(int i = 0; i < size;i++)

{

//create a row from the table to put the data in

row = table.NewRow();

//Iterate each element in the inner array and put them into the row

for (int j = 0; j < size; j++)

{

row[j] = magicSquare[i,j];

}

//Add the row to the table

table.Rows.Add(row);

}

return table;

}

}

5 Create the code for the ASPX page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<%@ Register
Assembly="WebFiguresService, Version=2.8.1.0, Culture=neutral,

PublicKeyToken=e1d84a0da19db86f"
Namespace="MathWorks.MATLAB.NET.WebFigures.Service"

TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">

<title>Calculation Services</title>

8-15

8 End-to-End Developer Tasks

<link rel="Stylesheet" type="text/css"
media=all href="./StyleSheet.css" />

<link href="StyleSheet.css"
rel="stylesheet" type="text/css" />

</head>
<body>

<form id="form1" runat="server">
<div style="text-align: center">

<table width="760" cellpadding="0" cellspacing="0">
<tr>

<td>
<img
src="header_bg.jpg"
alt="Header Image Not Found"
width="779"
height="72" /></td>

</tr>
</table>

<h1> Calculation Services</h1>

<asp:Label
ID="Label3"
runat="server"
Text="Calculate Magic Square">
</asp:Label>

<asp:Label
ID="Label4"
runat="server"
Text="Size: ">
</asp:Label>

<asp:TextBox
ID="TextBox3"
runat="server"
Width="61px">
5
</asp:TextBox>

8-16

Creating an End-to-End Web Application

<asp:Button

ID="Button2"
runat="server"
OnClick="Button2_Click"
Text="Calculate" />

<cc1:WebFigureControl
ID="WebFigureControl1"
runat="server"
Height="330px"
Width="330px" />

<asp:ObjectDataSource
ID="ObjectDataSource1"
runat="server"
SelectMethod="getMagicSquare"
TypeName="MagicSquare">

<SelectParameters>
<asp:ControlParameter

ControlID="TextBox3"
DefaultValue="5"
Name="size"
PropertyName="Text"
Type="Int32" />

</SelectParameters>
</asp:ObjectDataSource>
<asp:GridView

ID="GridView1"
runat="server"
DataSourceID="ObjectDataSource1"
ShowHeader="False">

</asp:GridView>

8-17

8 End-to-End Developer Tasks

</div>
</form>

</body>
</html>

6 Create the code behind the ASPX page:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using Examples;

using MathWorks.MATLAB.NET.WebFigures;

using MathWorks.MATLAB.NET.Arrays;

public partial class _Default : System.Web.UI.Page

{

private MagicCalc calc = new MagicCalc();

protected void Page_Load(object sender, EventArgs e)

{

MWArray input = Int32.Parse(TextBox3.Text);

WebFigureControl1.WebFigure =

new WebFigure(calc.getMagicWebFigure(input));

}

protected void Button2_Click(object sender, EventArgs e)

{

MWArray input = Int32.Parse(TextBox3.Text);

WebFigureControl1.WebFigure =

new WebFigure(calc.getMagicWebFigure(input));

ObjectDataSource1.Select();

}

}

8-18

Creating an End-to-End Web Application

Building Your Example Application
Build your application and deploy it using the version of IIS built into
Microsoft Visual Studio as follows:

1 From the root of your projects folder, open the WebSite folder.

2 Build the component in MATLAB using the mcc command:

mcc -W "dotnet:Examples,MagicCalc,0.0,private"
-d ".\mcode\output" -T "link:lib"
-v
"class{MagicCalc:.\mcode\getMagic.m,.\mcode\getMagicWebFigure.m}"

This command creates a file in the WebSite\mcode\output folder called
Examples.dll (this will be referenced from the Visual Studio project in
the next step).

3 Open Microsoft Visual Studio 2005 and select File > Open > Web Site.

4 Browse to the WebSite folder and open it.

5 Confirm that Examples.dll is added correctly as a reference. If there were
any errors or issues adding it, delete it and add a new reference to the DLL
you built in the WebSite\mcode\output folder.

8-19

8 End-to-End Developer Tasks

Microsoft® Visual Studio® Designer View of the Magic Square Calculator

6 Select Build > Build Solution. You should build with no errors. If there
are errors, ensure that:

• The MCR is installed.

• Examples.dll has been added as a reference in your project.

7 When you have built successfully, select Debug > Start Debugging. A
local IIS server starts and opens your page inside of it.

8-20

A

Sources for More
Information

A Sources for More Information

Other Examples
Use these links for more information on other Web examples of possible
interest:

MATLAB Builder JA
Other examples using MATLAB Builder JA include:

Black-Scholes
MATLAB Central Black-Scholes Web demo for Java

WebFigures
MATLAB Builder JA WebFigures Varargs demo

MATLAB Builder NE
Other examples using MATLAB Builder NE include:

Black-Scholes
MATLAB Central Black-Scholes Web demo for .NET

A-2

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12099&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16635&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12098&objectType;=file

Index

IndexB
business service layer 4-2

D
DAO 4-4

Hosting
Using a .NET Web Service 4-40
Using a Java Web Service 4-31

Hosting On a Web Server 4-24
Initializing

For a Servlet 4-25
Initializing the

with ASPX 4-36
Interacting with 4-37 4-40

in Java 4-32
Using an HTML String 5-6

F
Fault Tolerance

ensuring 6-9
front end layer 5-2

H
Hot Deployment 6-11

J
Java Virtual Machine (JVM)

Workaround for unsupported JVMs 6-13

M
MATLAB Compiler Runtime (MCR)

Workaround for multiple MCR versions 6-12

N
NUSOAP

Download location 5-26
NUSOAP PHP class add-in 1-5

S
Scaling

Calculation method (using PCT) 6-8
Session method 6-8

Server Administrator
Role 6-2

Server Environment
Scaling 6-7

SOAP 4-31
SOAP Web services

As part of data access in front-end layer 5-3
As part of interfaces in business service

layer 4-2
Using Embedded HTML with 5-8
Using To embed an image on a PHP

page 5-26
Using Web references with 5-27

SOAP Web Services 1-2

W
Web Figure

WebFigure 2-2
WebFigures 4-5

and MATLAB figures 3-3
Deploying a Java component 4-28
Example

using a DAO 4-28
Getting image data from a WebFigure 4-23
JSP page 5-6
Other examples of A-2
Returning a figure as data 3-4
Returning data from a WebFigure

Window 3-3
Use in AJAX component 5-5
Using directly from JSP

Index-1

Index

Using tag library 5-7

Index-2

	toc
	How to Use This Guide
	About This Guide
	Who Should Use This Guide?
	Commonly Used Software and Preliminary Setup Information
	MATLAB Programmer
	Integration Experts (Business Service Developer and Front-End De
	Internal Analyst

	Anatomy of a MATLAB Web Application
	MATLAB Web Application Environment
	Lifecycle of a Deployed MATLAB Web Application
	Introduction
	MATLAB Programmer
	Business Service Developer
	Front-End Developer
	Server Administrator
	Internal Analyst
	End-To-End Developer

	MATLAB Programmer Tasks
	Programming in MATLAB
	Creating a Deployable MATLAB Function
	Taking Inputs into a Function
	Returning Data Types
	MATLAB Figures
	Returning Data from a WebFigure Window
	Returning a Figure as Data
	Reorienting a Figure and Returning It as Data

	Deploying MATLAB Code with the Builders

	Business Service Developer Tasks
	Working with the Business Service Layer
	About the Business Service Layer
	About the Examples

	Creating a DAO for Deployment
	Initializing a Component
	Java
	.NET
	Interacting with a Component
	Converting an Integer to a MATLAB Data Type
	Java
	.NET
	Converting Array Data to a MATLAB Data Type
	Java
	.NET
	Converting a List to a MATLAB Data Type
	Java
	.NET
	Converting Name Value Pairs to a MATLAB Data Type
	Java (Maps)
	.NET (Dictionaries)
	Getting MATLAB Numerics from a Deployed Application
	Java
	.NET
	Getting MATLAB Strings from a Deployed Application
	Java
	.NET
	Getting MATLAB Numeric Arrays from a Component
	Java
	.NET
	Getting Character Arrays from a Component
	Java
	.NET
	Getting Byte Arrays from a Component
	Java
	.NET
	Getting Cell Arrays from a Component
	Java
	.NET
	Getting Structures from a Component
	Java
	.NET
	Getting a WebFigure from a Component and Attaching It to a Page
	Java
	.NET
	Getting Encoded Image Bytes from an Image in a Component
	Java
	.NET
	Getting a Buffered Image in a Component
	Java
	.NET
	Getting Image Data from a WebFigure
	.NET

	Hosting a DAO on a Web Server
	Hosting the DAO with a Servlet
	Initializing the DAO for a Servlet
	Numeric
	String
	Numeric Array
	Character Array
	Cell Array To Array
	Cell Array To List
	Structure To Map
	Byte Array
	Images (WebFigures)
	WebFigure to Bytes
	Raw Image Bytes
	Raw Image Bytes with Reorientation
	Example of a web.xml File Used in a Java™ Servlet Component
	Hosting a DAO Using a Java™ Web Service
	Setting Up the Root Web Service Class
	Interacting with the DAO
	Numeric
	String
	Numeric Array
	Character Array
	Byte Array
	Raw Image Bytes
	Raw Image Bytes with Reorientation
	Deploying the Web Service

	Hosting a .NET DAO with ASPX
	Initializing the DAO
	Interacting with the DAO
	Numeric
	String
	Double Array
	Character Array
	Cell Array to Array
	Cell Array to List
	Structure
	Byte Array
	Raw Image Bytes
	Raw Image Bytes with Reorientation
	WebFigure
	Deploying the ASPX

	Hosting a DAO Using a .NET Web Service
	Setting Up the Root Web Service Class
	Interacting with the DAO
	Numeric
	String
	Double Array
	Double Matrix
	Character Array
	Byte Array
	Raw Image Bytes
	Raw Image Bytes with Reorientation
	Deploying the Web Service

	Front-End Developer Tasks
	Working with the Front-End Layer
	About the Front-End Layer
	About the Examples

	Creating a WebFigure on a JSP Page
	Using an HTML String
	Using the WebFigure Tag Library
	Using Embedded HTML
	Creating a WebFigure on an ASPX Page
	Using the WebFigureControl Locally in Design Mode
	Using the WebFigureControl Remotely in Design Mode
	Returning an HTML String from ASPX Code to Embed the WebFigure i
	Using a WebFigureControl Directly from ASPX Code Without Using t
	Working with Static Images
	Using a Static Image In a JSP Page
	Using a Static Image in a ASPX Page
	Interacting with Images Using JavaScript (for .NET or Java)
	Displaying Complex Data Types Including Arrays and Matrices
	Working with JSP Page Data
	Working with ASPX Page Data
	Using ASP.NET to Integrate with WYSIWYG Controls
	Working with ASP.NET Using the Visual Studio Wizard
	Using Web Services
	Displaying Web Services Images and Data in PHP
	Displaying Web Services Images and Data in .NET

	Server Administrator Tasks
	Managing a Deployment Server Environment
	The Server Administrator’s Role in Deployment
	An Overview of Deployed Applications
	Installing the MATLAB Compiler Runtime (MCR)
	The MATLAB Compiler Runtime (MCR) Installer
	Helper Library Locations
	.NET
	Java

	Loading the MATLAB Compiler Runtime (MCR)
	.NET
	Java

	Scaling Your Server Environment
	Calculation Scaling
	Session Scaling

	Ensuring Fault Tolerance

	Hot Deployment
	.NET
	Java

	Working with Multiple Versions of the MATLAB Compiler Runtime (M
	Unsupported Versions of the JVM

	Internal Analyst Tasks
	Working with Content
	Example Tasks
	Microsoft Excel Web Service Client Standalone Application

	End-to-End Developer Tasks
	Role of the End-To-End Developer
	Example: The Magic Square Calculator On the Web
	Creating an End-to-End Web Application
	Creating a Java Web Application, End-to-End
	Quick Start: Building Your Example Component
	Advanced: Building Your Example Component Manually

	Creating a .NET Web Application, End-to-End
	Preparing Your Example Application
	Building Your Example Application

	Sources for More Information
	Other Examples
	MATLAB Builder JA
	Black-Scholes
	WebFigures

	MATLAB Builder NE
	Black-Scholes

	Index

